TY - THES A1 - Eisold, Ursula T1 - Cumarin- und DBD-Farbstoffe als Fluoreszenzsonden T1 - Coumarin and dbd dyes as fluorescent probes BT - Fluoreszenzimmunassays und Förster-Resonanz-Energietransfer BT - fluorescence immunoassays and Foerster resonance energy transfer N2 - In dieser Arbeit werden drei Themen im Zusammenhang mit den spektroskopischen Eigenschaften von Cumarin- (Cou) und DBD-Farbstoffen ([1,3]Dioxolo[4,5-f][1,3]benzodioxol) behandelt. Der erste Teil zeigt die grundlegende spektroskopische Charakterisierung von 7-Aminocumarinen und ihre potentielle Anwendung als Fluoreszenzsonde für Fluoreszenzimmunassays. Im zweiten Teil werden mit die photophysikalischen Eigenschaften der Cumarine genutzt um Cou- und DBD-funktionalisierte Oligo-Spiro-Ketal-Stäbe (OSTK) und ihre Eigenschaften als Membransonden zu untersuchen. Der letzte Teil beschäftigt sich mit der Synthese und der Charakterisierung von Cou- und DBD-funktionalisierten Polyprolinen als Referenzsysteme für schwefelfunktionalisierte OSTK-Stäbe und ihrer Kopplung an Goldnanopartikel. Immunochemische Analysemethoden sind in der klinischen Diagnostik sehr erfolgreich und werden heute auch für die Nahrungsmittelkontrolle und Überwachung von Umweltfragen mit einbezogen. Dadurch sind sie von großem Interesse für weitere Forschungen. Unter den verschiedenen Immunassays zeichnen sich lumineszenzbasierte Formate durch ihre herausragende Sensitivität aus, die dieses Format für zukünftige Anwendungen besonders attraktiv macht. Die Notwendigkeit von Multiparameterdetektionsmöglichkeiten erfordert einen Werkzeugkasten mit Farbstoffen, um die biochemische Reaktion in ein optisch detektierbares Signal umzuwandeln. Hier wird bei einem Multiparameteransatz jeder Analyt durch einen anderen Farbstoff mit einer einzigartigen Emissionsfarbe, die den blauen bis roten Spektralbereich abdecken, oder eine einzigartige Abklingzeit detektiert. Im Falle eines kompetitiven Immunassayformats wäre für jeden der verschiedenen Farbstoffe ein einzelner Antikörper erforderlich. In der vorliegenden Arbeit wird ein leicht modifizierter Ansatz unter Verwendung einer Cumarineinheit, gegen die hochspezifische monoklonale Antikörper (mAb) erzeugt wurden, als grundlegendes Antigen präsentiert. Durch eine Modifikation der Stammcumarineinheit an einer Position des Moleküls, die für die Erkennung durch den Antikörper nicht relevant ist, kann auf den vollen Spektralbereich von blau bis tiefrot zugegriffen werden. In dieser Arbeit wird die photophysikalische Charakterisierung der verschiedenen Cumarinderivate und ihrer entsprechenden Immunkomplexe mit zwei verschiedenen, aber dennoch hochspezifischen, Antikörpern präsentiert. Die Cumarinfarbstoffe und ihre Immunkomplexe wurden durch stationäre und zeitaufgelöste Absorptions- sowie Fluoreszenzemissionsspektroskopie charakterisiert. Darüber hinaus wurden Fluoreszenzdepolarisationsmessungen durchgeführt, um die Daten zu vervollständigen, die die verschiedenen Bindungsmodi der beiden Antikörper betonten. Im Gegensatz zu häufig eingesetzten Nachweissystemen wurde eine massive Fluoreszenzverstärkung bei der Bildung des Antikörper-Farbstoffkomplexes bis zu einem Faktor von 50 gefunden. Wegen der leichten Emissionsfarbenänderung durch das Anpassen der Cumarinsubstitution in der für die Antigenbindung nicht relevanten Position des Elternmoleküls, ist eine Farbstoff-Toolbox vorhanden, die bei der Konstruktion von kompetitiven Multiparameterfluoreszenzverstärkungsimmunassays verwendet werden kann. Oligo-Spiro-Thio-Ketal-Stäbe werden aufgrund ihres hydrophoben Rückgrats leicht in Doppellipidschichten eingebaut und deshalb als optische Membransonde verwendet. Wegen ihres geringen Durchmessers wird nur eine minimale Störung der Doppellipidschicht verursacht. Durch die Markierung mit Fluoreszenzfarbstoffen sind neuartige Förster-Resonanz-Energietransfersonden mit hoch definierten relativen Orientierungen der Übergangsdipolmomente der Donor- und Akzeptorfarbstoffe zugänglich und macht die Klasse der OSTK-Sonden zu einem leistungsstarken, flexiblen Werkzeugkasten für optische Biosensoranwendungen. Mit Hilfe von stationären und zeitaufgelösten Fluoreszenzexperimenten wurde der Einbau von Cumarin- und DBD markierten OSTK-Stäben in großen unilamellaren Vesikeln untersucht und die Ergebnisse durch Fluoreszenzdepolarisationsmessungen untermauert. Der letzte Teil dieser Arbeit beschäftigt sich mit der Synthese und Charakterisierung von Cou- und DBD-funktionalisierten Polyprolinen und ihrer Kopplung an Goldnanopartikel. Die farbstoffmarkierten Polyproline konnten erfolgreich hergestellt werden. Es zeigten sich deutlich Einflüsse auf die spektroskopischen Eigenschaften der Farbstoffe durch die Bindung an die Polyprolinhelix. Die Kopplung an die 5 nm großen AuNP konnte erfolgreich durchgeführt werden. Die Erfahrungen, die durch die Kopplung der Polyproline an die AuNP, gewonnen wurde, ist die Basis für eine Einzelmolekül-AFM-FRET-Nanoskopie mit OSTK-Stäben. N2 - In this thesis, three topics are discussed in connection with the spectroscopic properties of coumarin (Cou) and DBD ([1,3]dioxolo[4,5-f][1,3]benzodioxole) dyes. The first part shows the basic spectroscopic characterization of 7-aminocumarins and their advantage as a fluorescence probe for fluorescence immunoassays. In the second part, the photophysical properties of the coumarins are used to investigate Cou- and DBD-functionalized oligo-spiro-ketal rods (OSTK) and their properties as membrane probes. The last part deals with the synthesis and characterization of Cou- and DBD-functionalized polyprolines as reference systems for sulfur-functionalized OSTK rods and their coupling to gold nanoparticles. The fact that immunochemical analysis methods are very successful in clinical diagnostics and are now also included for food control and monitoring of environmental questions they are of great interest for further research. Among the various immunoassays, luminescence-based formats are distinguished by their outstanding sensitivity, which makes this format particularly attractive for future applications. The need for multiparameter detection capabilities requires a toolbox of dyes to convert the biochemical response to an optically detectable signal. Here, in the case of a multiparameter approach, each analyte is detected by another dye with a unique emission color which covers the blue to red spectral range or a unique decay time. In the case of a competitive immunoassay format, a single antibody would be required for each of the different dyes. In the present work, a slightly modified approach is presented as a basic antigen using a coumarin moiety against which highly specific antibodies have been produced. By modifying the parent coumarin moiety at a site of the molecule which is not relevant for recognition by the antibody, the full spectral range from blue to deep red can be accessed. This work presents the photophysical characterization of the different cumarine derivatives and their corresponding immuno complexes with two different but nevertheless highly specific monoclonal antibodies (mAb). The coumarin dyes and their immunocomplexes were characterized by steady-state time-resolved absorption and fluorescence emission spectroscopy. In addition, fluorescence depolarization measurements were performed to complete the data emphasizing the different binding modes of the two antibodies. In contrast to frequently used detection systems, a massive fluorescence enhancement was found in the formation of the antibody dye complex up to a factor of 50. Because of the slight change in the emission by adjusting the coumarin substitution in the position of the parent molecule which is not relevant for the antigen binding, a dye toolbox which can be used for the construction of competitive multiparameter fluorescence enhancement immunoassays has been created. Due to their hydrophobic backbone, oligospirothioketal rods (OSTK) are easily incorporated into lipid bilayers and are therefore used as an optical membrane probe. Because of their narrow diameter, only a minimal disturbance of the lipid bilayer is caused. By labeling with fluorescent dyes, novel Förster resonance energy transfer probes are available with highly defined relative orientations of the transition dipole moments of the donor and acceptor dyes, making the class of the OSTK probes into a powerful, flexible toolbox for optical biosensor applications. The incorporation of cumarin and [1,3]-dioxolo[4,5-f][1,3]benzodioxol-labeled OSTK rods in large unilamellar vesicles was investigated using steady-state and time-resolved fluorescence experiments and the results were confirmed by fluorescence depolarization measurements. The last part of this work deals with the synthesis and characterization of Cou- and DBD-functionalized polyprolines and their coupling to gold nanoparticles. The dye-labeled polyprolines were successfully synthesized. Influences on the spectroscopic properties of the dyes by binding to the polyproline helix were found. The coupling to 5 nm AuNP was successfully carried out. The experience gained by the coupling of the polyprolins to the AuNP can be used as a good basis for the investigation of a single molecule FRET AFM nanoscopy using OSTK rods. KW - FRET KW - Förster-Resonanz-Energie-Transfer KW - Förster resonance energy transfer KW - Origo-Spiro-Thio-Ketal-Stäbe KW - oligo spiro thio ketal rods KW - FRET Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-405833 ER - TY - THES A1 - Olejko, Lydia T1 - Förster resonance energy transfer (FRET)-based nanophotonics using DNA origami structures T1 - Förster-Resonanzenergietransfer (FRET) basierende Nanophotonik auf DNA Origami Strukturen N2 - The field of nanophotonics focuses on the interaction between electromagnetic radiation and matter on the nanometer scale. The elements of nanoscale photonic devices can transfer excitation energy non-radiatively from an excited donor molecule to an acceptor molecule by Förster resonance energy transfer (FRET). The efficiency of this energy transfer is highly dependent on the donor-acceptor distance. Hence, in these nanoscale photonic devices it is of high importance to have a good control over the spatial assembly of used fluorophores. Based on molecular self-assembly processes, various nanostructures can be produced. Here, DNA nanotechnology and especially the DNA origami technique are auspicious self-assembling methods. By using DNA origami nanostructures different fluorophores can be introduced with a high local control to create a variety of nanoscale photonic objects. The applications of such nanostructures range from photonic wires and logic gates for molecular computing to artificial light harvesting systems for artificial photosynthesis. In the present cumulative doctoral thesis, different FRET systems on DNA origami structures have been designed and thoroughly analyzed. Firstly, the formation of guanine (G) quadruplex structures from G rich DNA sequences has been studied based on a two-color FRET system (Fluorescein (FAM)/Cyanine3 (Cy3)). Here, the influences of different cations (Na+ and K+), of the DNA origami structure and of the DNA sequence on the G-quadruplex formation have been analyzed. In this study, an ion-selective K+ sensing scheme based on the G-quadruplex formation on DNA origami structures has been developed. Subsequently, the reversibility of the G-quadruplex formation on DNA origami structures has been evaluated. This has been done for the simple two-color FRET system which has then been advanced to a switchable photonic wire by introducing additional fluorophores (FAM/Cy3/Cyanine5 (Cy5)/IRDye®700). In the last part, the emission intensity of the acceptor molecule (Cy5) in a three-color FRET cascade has been tuned by arranging multiple donor (FAM) and transmitter (Cy3) molecules around the central acceptor molecule. In such artificial light harvesting systems, the excitation energy is absorbed by several donor and transmitter molecules followed by an energy transfer to the acceptor leading to a brighter Cy5 emission. Furthermore, the range of possible excitation wavelengths is extended by using several different fluorophores (FAM/Cy3/Cy5). In this part of the thesis, the light harvesting efficiency (antenna effect) and the FRET efficiency of different donor/transmitter/acceptor assemblies have been analyzed and the artificial light harvesting complex has been optimized in this respect. N2 - Nanotechnologie hat in den letzten Jahrzehnten durch die Herstellung von Materialien mit außergewöhnlichen Eigenschaften für Anwendungen im Bereich der Medizin und Materialwissenschaften immer mehr an Popularität gewonnen. Die Herstellungsmethoden von Nanostrukturen sind weit gefächert. Auch Desoxyribonukleinsäure (DNS bzw. engl. DNA, deoxyribonucleic acid) kann für die Herstellung von Strukturen im Nanometerbereich genutzt werden. Diese sogenannte DNA-Nanotechnologie wurde in den frühen 1980er Jahren von Nadrian C. Seeman begründet. Ungefähr 30 Jahre später wurde eine neue Methodik für die Herstellung von DNA-Nanostrukturen von Paul W. K. Rothemund entwickelt, die er „scaffold DNA origami“ (Gerüst-DNA-Origami) nannte. DNA-Origami-Nanostrukturen können relativ einfach hergestellt werden und eignen sich perfekt für die Anordnung unterschiedlicher Moleküle (zum Beispiel Fluorophore) mit hoher räumlicher Kontrolle und Präzision. Daher können sie als Substrate genutzt werden, um verschiedene Förster-Resonanzenergietransfer (FRET) Systeme zu entwerfen und zu untersuchen. FRET ist ein strahlungsloser Energietransfer, bei dem die Anregungsenergie von einem Donor- auf ein Akzeptor-Molekül übertragen wird. In dieser kumulativen Doktorarbeit wurden verschiedene FRET-Systeme auf DNA-Origami-Nanostrukturen entwickelt und mithilfe der Fluoreszenzspektroskopie untersucht. Hierbei wurde zuerst die durch einwertige Kationen (Kalium oder Natrium) induzierte Guanin-Quadruplex-Faltung von freier Telomer-DNA und Telomer-DNA auf DNA-Origami-Strukturen mittels FRET analysiert. Diese Untersuchungen haben gezeigt, dass die freie umgedrehte menschliche Telomer-Sequenz (RevHumTel, 5'-(GGG ATT)4) generell sensitiver auf K+ als auf Na+ reagiert. Durch die Immobilisierung der Telomer-DNA auf DNA-Origami-Strukturen kann eine vollständige Selektivität für K+ erreicht werden. Interessanterweise wird die Ionenselektivität aufgehoben, wenn die menschliche Telomer-Sequenz (HumTel, 5'-(TTA GGG)4) verwendet wird. Basierend auf der G-Quadruplex-Faltung konnten schaltbare FRET-Systeme entwickelt werden, da sich die G-Quadruplexe wieder entfalten, wenn die Kationen mithilfe von zum Beispiel Kryptanden entfernt werden. In den hier untersuchten FRET-Systemen konnte zwischen hoher FRET-Effizienz (gefalteter G-Quadruplex) und niedriger FRET-Effizienz (entfalteter DNA Einzelstrang) durch Zugabe KCl bzw. cryptand gewechselt werden. Da sich DNA-Origami-Strukturen recht einfach modifizieren lassen, wurde das ursprüngliche zwei-Farben-FRET-System durch Hinzufügen eines weiteren etwas rotverschobenen Farbstoffes erweitert (drei-Farben-FRET-Kaskade). Schließlich konnte ein schaltbarer photonischer Draht durch Einfügen eines vierten Farbstoffes entwickelt werden. Die Emissionsintensität des finalen Akzeptors ist in einer einfachen drei-Farben-FRET-Kaskade (ein Donor, ein Transmitter und ein Akzeptor) verhältnismäßig gering und kann durch das Anordnen von mehreren Donor- und Transmitter-Molekülen um ein zentrales Akzeptor-Molekül herum stark erhöht werden. In diesen sogenannten künstlichen Lichtsammelkomplexen absorbieren die Donor-Moleküle das Anregungslicht und übertragen dieses über mehrere FRET-Stufen zum Akzeptor-Molekül. Dadurch wird der Wellenlängenbereich der elektromagnetischen Strahlung, welcher vom Akzeptor absorbiert werden kann, vergrößert und die Emissionsintensität des Akzeptors verstärkt. In diesem Teil der Arbeit wurde die Anzahl der Farbstoffe und die Anordnung dieser unterschiedlichen Farbstoffe variiert und die Lichtsammeleffizienz und FRET-Effizienz bestimmt. Hierbei wurden diese Parameter optimiert und aufgrund der gefundenen Ergebnisse konnten Design-Regeln für solche künstlichen Lichtsammelkomplexe aufgestellt werden. KW - DNA origami KW - FRET KW - Förster resonance energy transfer KW - DNA Origami KW - FRET KW - Förster-Resonanzenergietransfer Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-396747 ER -