TY - JOUR A1 - Lai, Feili A1 - Feng, Jianrui A1 - Hei, Tobias A1 - Wang, Gui-Chang A1 - Adler, Peter A1 - Antonietti, Markus A1 - Oschatz, Martin T1 - Strong metal oxide-support interactions in carbon/hematite nanohybrids activate novel energy storage modes for ionic liquid-based supercapacitors JF - Energy Storage Materials N2 - Strong metal oxide-support interaction is crucial to activate high energy storage modes of carbon-supported hybrid electrodes in ionic liquid-based supercapacitors. Although it is known that conductive supports can influence the electrochemical properties of metal oxides, insights into how metal oxide-support interactions can be exploited to optimize joint energy storage properties are lacking. We report the junction between alpha-Fe2O3 nanosplotches and phosphorus-doped ordered mesoporous carbon (CMK-3-P) with strong covalent anchoring of the metal oxide. The oxide-carbon interaction in CMK-3-P-Fe2O3 is strengthening the junction and charge transfer between Fe2O3 and CMK-3-P. It enhances energy storage by intensifying the interaction between ionic liquid ions and the surface of the electrode. Density functional theory simulations reveal that the strong metal oxide-support interaction increases the adsorption energy of ionic liquid to -4.77 eV as compared to -3.85 eV for a CMK-3Fe(2)O(3) hybrid with weaker binding. In spite of the lower specific surface area and apparently similar energy storage mode, the CMK-3-P-Fe2O3 exhibits superior electrical double-layer capacitor performance with a specific capacitance of 179 F g(-1) at 2 mV s(-1) (0-3.5 V) in comparison to Fe2O3-free CMK-3 and CMK-3-P reference materials. This principle for design of hybrid electrodes can be applicable for future rational design of stable metal oxide-support electrodes for advanced energy storage. KW - Supercapacitor KW - Nanohybrid KW - Iron oxide KW - Ionic liquid KW - Ordering transitions KW - Main text Y1 - 2019 U6 - https://doi.org/10.1016/j.ensm.2019.04.035 SN - 2405-8297 VL - 20 SP - 188 EP - 195 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Lai, Feili A1 - Feng, Jianrui A1 - Heil, Tobias A1 - Tian, Zhihong A1 - Schmidt, Johannes A1 - Wang, Gui-Chang A1 - Oschatz, Martin T1 - Partially delocalized charge in Fe-doped NiCo2S4 nanosheet-mesoporous carbon-composites for high-voltage supercapacitors JF - Journal of materials chemistry : A, Materials for energy and sustainability N2 - Unraveling the effect of transition-metal doping on the energy storage properties of bimetallic sulfides remains a grand challenge. Herein, we construct bimetallic sulfide nanosheets and hence deliberately introduce transition-metal doping domains on their surface. The resulting materials show not only an enhanced density of states near the Fermi level but also partially delocalized charge as shown by density functional theory (DFT) calculations. Fe-doped NiCo2S4 nanosheets wrapped on N,S-doped ordered mesoporous carbon (Fe-NiCo2S4@N,S-CMK-3) are prepared, which show an enhanced specific capacitance of 197.8 F g(-1) in ionic liquid-based supercapacitors at a scan rate of 2 mV s(-1). This is significantly higher as compared to the capacitance of 155.2 and 135.9 F g(-1) of non-iron-doped NiCo2S4@N,S-CMK and Fe-NiCo2S4@CMK-3 electrodes, respectively. This result arises from the enhanced ionic liquid polarization effect and transportation ability from the Fe-NiCo2S4 surface and N,S-CMK-3 structure. Furthermore, the importance of matching multi-dimensional structures and ionic liquid ion sizes in the fabrication of asymmetric supercapacitors (ASCs) is demonstrated. As a result, the ASC device exhibits a high energy density of 107.5 W h kg(-1) at a power density of 100 W kg(-1) in a working-voltage window of 4 V when using Fe-NiCo2S4@N,S-CMK-3 and N,S-CMK-3 as positive and negative electrodes, respectively. This work puts forward a new direction to design supercapacitor composite electrodes for efficient ionic liquid coupling. Y1 - 2019 U6 - https://doi.org/10.1039/c9ta06250e SN - 2050-7488 SN - 2050-7496 VL - 7 IS - 33 SP - 19342 EP - 19347 PB - Royal Society of Chemistry CY - Cambridge ER - TY - THES A1 - Lai, Feili T1 - Functionalized ordered mesoporous carbon materials for enhancing the energy density of supercapacitors Y1 - 2019 ER -