TY - JOUR A1 - Kamann, Sebastian A1 - Husser, T. -O. A1 - Dreizler, S. A1 - Emsellem, E. A1 - Weilbacher, Peter Michael A1 - Martens, S. A1 - Bacon, R. A1 - den Brok, M. A1 - Giesers, B. A1 - Krajnovic, Davor A1 - Roth, Martin M. A1 - Wendt, Martin A1 - Wisotzki, Lutz T1 - A stellar census in globular clusters with MUSE BT - the contribution of rotation to cluster dynamics studied with 200 000 stars JF - Monthly notices of the Royal Astronomical Society N2 - This is the first of a series of papers presenting the results from our survey of 25 Galactic globular clusters with the MUSE integral-field spectrograph. In combination with our dedicated algorithm for source deblending, MUSE provides unique multiplex capabilities in crowded stellar fields and allows us to acquire samples of up to 20 000 stars within the half-light radius of each cluster. The present paper focuses on the analysis of the internal dynamics of 22 out of the 25 clusters, using about 500 000 spectra of 200 000 individual stars. Thanks to the large stellar samples per cluster, we are able to perform a detailed analysis of the central rotation and dispersion fields using both radial profiles and two-dimensional maps. The velocity dispersion profiles we derive show a good general agreement with existing radial velocity studies but typically reach closer to the cluster centres. By comparison with proper motion data, we derive or update the dynamical distance estimates to 14 clusters. Compared to previous dynamical distance estimates for 47 Tuc, our value is in much better agreement with other methods. We further find significant (>3 sigma) rotation in the majority (13/22) of our clusters. Our analysis seems to confirm earlier findings of a link between rotation and the ellipticities of globular clusters. In addition, we find a correlation between the strengths of internal rotation and the relaxation times of the clusters, suggesting that the central rotation fields are relics of the cluster formation that are gradually dissipated via two-body relaxation. KW - techniques: imaging spectroscopy KW - stars: kinematics and dynamics KW - globular clusters: general Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx2719 SN - 0035-8711 SN - 1365-2966 VL - 473 IS - 4 SP - 5591 EP - 5616 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Wendt, Martin A1 - Husser, Tim-Oliver A1 - Kamann, Sebastian A1 - Monreal-Ibero, Ana A1 - Richter, Philipp A1 - Brinchmann, Jarle A1 - Dreizler, Stefan A1 - Weilbacher, Peter Michael A1 - Wisotzki, Lutz T1 - Mapping diffuse interstellar bands in the local ISM on small scales via MUSE 3D spectroscopy A pilot study based on globular cluster NGC 6397 JF - Astronomy and astrophysics : an international weekly journal N2 - Context. We map the interstellar medium (ISM) including the diffuse interstellar bands (DIBs) in absorption toward the globular cluster NGC6397 using VLT/MUSE. Assuming the absorbers are located at the rim of the Local Bubble we trace structures on the order of mpc (milliparsec, a few thousand AU). Aims. We aimed to demonstrate the feasibility to map variations of DIBs on small scales with MUSE. The sightlines defined by binned stellar spectra are separated by only a few arcseconds and we probe the absorption within a physically connected region. Methods. This analysis utilized the fitting residuals of individual stellar spectra of NGC6397 member stars and analyzed lines from neutral species and several DIBs in Voronoi-binned composite spectra with high signal-to-noise ratio (S/N). Results. This pilot study demonstrates the power of MUSE for mapping the local ISM on very small scales which provides a new window for ISM observations. We detect small scale variations in Na-I and K-I as well as in several DIBs within few arcseconds, or mpc with regard to the Local Bubble. We verify the suitability of the MUSE 3D spectrograph for such measurements and gain new insights by probing a single physical absorber with multiple sight lines. KW - techniques: imaging spectroscopy KW - globular clusters: individual: NGC 6397 KW - dust, extinction KW - ISM: structure KW - ISM: lines and bands Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201629816 SN - 1432-0746 VL - 607 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Kuckein, Christoph A1 - Diercke, Andrea A1 - González Manrique, Sergio Javier A1 - Verma, Meetu A1 - Loehner-Boettcher, Johannes A1 - Socas-Navarro, H. A1 - Balthasar, Horst A1 - Sobotka, M. A1 - Denker, Carsten T1 - Ca II 8542 angstrom brightenings induced by a solar microflare JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. We study small-scale brightenings in Ca II 8542 angstrom line-core images to determine their nature and effect on localized heating and mass transfer in active regions. Methods. High-resolution two-dimensional spectroscopic observations of a solar active region in the near-infrared Ca II 8542 angstrom line were acquired with the GREGOR Fabry-Perot Interferometer attached to the 1.5-m GREGOR telescope. Inversions of the spectra were carried out using the NICOLE code to infer temperatures and line-of-sight (LOS) velocities. Response functions of the Ca II line were computed for temperature and LOS velocity variations. Filtergrams of the Atmospheric Imaging Assembly (AIA) and magnetograms of the Helioseismic and Magnetic Imager (HMI) were coaligned to match the ground-based observations and to follow the Ca II brightenings along all available layers of the atmosphere. Results. We identified three brightenings of sizes up to 2 ' x 2 ' that appeared in the Ca II 8542 angstrom line-core images. Their lifetimes were at least 1.5 min. We found evidence that the brightenings belonged to the footpoints of a microflare (MF). The properties of the observed brightenings disqualified the scenarios of Ellerman bombs or Interface Region Imaging Spectrograph (IRIS) bombs. However, this MF shared some common properties with flaring active-region fibrils or flaring arch filaments (FAFs): (1) FAFs and MFs are both apparent in chromospheric and coronal layers according to the AIA channels; and (2) both show flaring arches with lifetimes of about 3.0-3.5 min and lengths of similar to 20 ' next to the brightenings. The inversions revealed heating by 600 K at the footpoint location in the ambient chromosphere during the impulsive phase. Connecting the footpoints, a dark filamentary structure appeared in the Ca II line-core images. Before the start of the MF, the spectra of this structure already indicated average blueshifts, meaning upward motions of the plasma along the LOS. During the impulsive phase, these velocities increased up to -2.2 km s(-1). The structure did not disappear during the observations. Downflows dominated at the footpoints. However, in the upper photosphere, slight upflows occurred during the impulsive phase. Hence, bidirectional flows are present in the footpoints of the MF. KW - Sun: photosphere KW - Sun: chromosphere KW - Sun: corona KW - Sun: activity KW - techniques: imaging spectroscopy Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201731319 SN - 1432-0746 VL - 608 PB - EDP Sciences CY - Les Ulis ER -