TY - JOUR A1 - Safdari, Hadiseh A1 - Cherstvy, Andrey G. A1 - Chechkin, Aleksei V. A1 - Bodrova, Anna A1 - Metzler, Ralf T1 - Aging underdamped scaled Brownian motion BT - Ensemble- and time-averaged particle displacements, nonergodicity, and the failure of the overdamping approximation JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We investigate both analytically and by computer simulations the ensemble- and time-averaged, nonergodic, and aging properties of massive particles diffusing in a medium with a time dependent diffusivity. We call this stochastic diffusion process the (aging) underdamped scaled Brownian motion (UDSBM). We demonstrate how the mean squared displacement (MSD) and the time-averaged MSD of UDSBM are affected by the inertial term in the Langevin equation, both at short, intermediate, and even long diffusion times. In particular, we quantify the ballistic regime for the MSD and the time-averaged MSD as well as the spread of individual time-averaged MSD trajectories. One of the main effects we observe is that, both for the MSD and the time-averaged MSD, for superdiffusive UDSBM the ballistic regime is much shorter than for ordinary Brownian motion. In contrast, for subdiffusive UDSBM, the ballistic region extends to much longer diffusion times. Therefore, particular care needs to be taken under what conditions the overdamped limit indeed provides a correct description, even in the long time limit. We also analyze to what extent ergodicity in the Boltzmann-Khinchin sense in this nonstationary system is broken, both for subdiffusive and superdiffusive UDSBM. Finally, the limiting case of ultraslow UDSBM is considered, with a mixed logarithmic and power-law dependence of the ensemble-and time-averaged MSDs of the particles. In the limit of strong aging, remarkably, the ordinary UDSBM and the ultraslow UDSBM behave similarly in the short time ballistic limit. The approaches developed here open ways for considering other stochastic processes under physically important conditions when a finite particle mass and aging in the system cannot be neglected. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevE.95.012120 SN - 2470-0045 SN - 2470-0053 VL - 95 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Liu, Lin A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Facilitated Diffusion of Transcription Factor Proteins with Anomalous Bulk Diffusion JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - What are the physical laws of the diffusive search of proteins for their specific binding sites on DNA in the presence of the macromolecular crowding in cells? We performed extensive computer simulations to elucidate the protein target search on DNA. The novel feature is the viscoelastic non-Brownian protein bulk diffusion recently observed experimentally. We examine the influence of the protein-DNA binding affinity and the anomalous diffusion exponent on the target search time. In all cases an optimal search time is found. The relative contribution of intermittent three-dimensional bulk diffusion and one-dimensional sliding of proteins along the DNA is quantified. Our results are discussed in the light of recent single molecule tracking experiments, aiming at a better understanding of the influence of anomalous kinetics of proteins on the facilitated diffusion mechanism. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpcb.6b12413 SN - 1520-6106 VL - 121 SP - 1284 EP - 1289 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Godec, Aljaž A1 - Metzler, Ralf T1 - First passage time statistics for two-channel diffusion JF - Journal of physics : A, Mathematical and theoretical N2 - We present rigorous results for the mean first passage time and first passage time statistics for two-channel Markov additive diffusion in a 3-dimensional spherical domain. Inspired by biophysical examples we assume that the particle can only recognise the target in one of the modes, which is shown to effect a non-trivial first passage behaviour. We also address the scenario of intermittent immobilisation. In both cases we prove that despite the perfectly non-recurrent motion of two-channel Markov additive diffusion in 3 dimensions the first passage statistics at long times do not display Poisson-like behaviour if none of the phases has a vanishing diffusion coefficient. This stands in stark contrast to the standard (one-channel) Markov diffusion counterpart. We also discuss the relevance of our results in the context of cellular signalling. KW - first passage time KW - Markov additive processes KW - Fokker-Planck equation KW - random search processes KW - coupled initial boundary value problem KW - cellular signalling KW - asymptotic analysis Y1 - 2017 U6 - https://doi.org/10.1088/1751-8121/aa5204 SN - 1751-8113 SN - 1751-8121 VL - 50 IS - 8 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Kar, Prathitha A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Acceleration of bursty multiprotein target search kinetics on DNA by colocalisation JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Proteins are capable of locating specific targets on DNA by employing a facilitated diffusion process with intermittent 1D and 3D search steps. Gene colocalisation and coregulation-i.e. the spatial proximity of two communicating genes-is one factor capable of accelerating the target search process along the DNA. We perform Monte Carlo computer simulations and demonstrate the benefits of gene colocalisation for minimising the search time in a model DNA-protein system. We use a simple diffusion model to mimic the search for targets by proteins, produced initially in bursts of multiple proteins and performing the first-passage search on the DNA chain. The behaviour of the mean first-passage times to the target is studied as a function of distance between the initial position of proteins and the DNA target position, as well as versus the concentration of proteins. We also examine the properties of bursty target search kinetics for varying physical-chemical protein-DNA binding affinity. Our findings underline the relevance of colocalisation of production and binding sites for protein search inside biological cells. Y1 - 2017 U6 - https://doi.org/10.1039/c7cp06922g SN - 1463-9076 SN - 1463-9084 VL - 20 IS - 12 SP - 7931 EP - 7946 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Chechkin, Aleksei V. A1 - Seno, Flavio A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Brownian yet Non-Gaussian Diffusion: From Superstatistics to Subordination of Diffusing Diffusivities JF - Physical review : X, Expanding access N2 - A growing number of biological, soft, and active matter systems are observed to exhibit normal diffusive dynamics with a linear growth of the mean-squared displacement, yet with a non-Gaussian distribution of increments. Based on the Chubinsky-Slater idea of a diffusing diffusivity, we here establish and analyze a minimal model framework of diffusion processes with fluctuating diffusivity. In particular, we demonstrate the equivalence of the diffusing diffusivity process with a superstatistical approach with a distribution of diffusivities, at times shorter than the diffusivity correlation time. At longer times, a crossover to a Gaussian distribution with an effective diffusivity emerges. Specifically, we establish a subordination picture of Brownian but non-Gaussian diffusion processes, which can be used for a wide class of diffusivity fluctuation statistics. Our results are shown to be in excellent agreement with simulations and numerical evaluations. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevX.7.021002 SN - 2160-3308 VL - 7 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Schwarzl, Maria A1 - Godec, Aljaz A1 - Metzler, Ralf T1 - Quantifying non-ergodicity of anomalous diffusion with higher order moments JF - Scientific reports N2 - Anomalous diffusion is being discovered in a fast growing number of systems. The exact nature of this anomalous diffusion provides important information on the physical laws governing the studied system. One of the central properties analysed for finite particle motion time series is the intrinsic variability of the apparent diffusivity, typically quantified by the ergodicity breaking parameter EB. Here we demonstrate that frequently EB is insufficient to provide a meaningful measure for the observed variability of the data. Instead, important additional information is provided by the higher order moments entering by the skewness and kurtosis. We analyse these quantities for three popular anomalous diffusion models. In particular, we find that even for the Gaussian fractional Brownian motion a significant skewness in the results of physical measurements occurs and needs to be taken into account. Interestingly, the kurtosis and skewness may also provide sensitive estimates of the anomalous diffusion exponent underlying the data. We also derive a new result for the EB parameter of fractional Brownian motion valid for the whole range of the anomalous diffusion parameter. Our results are important for the analysis of anomalous diffusion but also provide new insights into the theory of anomalous stochastic processes. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-03712-x SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Vinod, Deepak A1 - Aghion, Erez A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Time averaging, ageing and delay analysis of financial time series JF - New journal of physics : the open-access journal for physics N2 - We introduce three strategies for the analysis of financial time series based on time averaged observables. These comprise the time averaged mean squared displacement (MSD) as well as the ageing and delay time methods for varying fractions of the financial time series. We explore these concepts via statistical analysis of historic time series for several Dow Jones Industrial indices for the period from the 1960s to 2015. Remarkably, we discover a simple universal law for the delay time averaged MSD. The observed features of the financial time series dynamics agree well with our analytical results for the time averaged measurables for geometric Brownian motion, underlying the famed Black-Scholes-Merton model. The concepts we promote here are shown to be useful for financial data analysis and enable one to unveil new universal features of stock market dynamics. KW - time averaging KW - diffusion KW - geometric Brownian motion KW - financial time series Y1 - 2017 U6 - https://doi.org/10.1088/1367-2630/aa7199 SN - 1367-2630 VL - 19 SP - 135 EP - 147 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Sandev, Trifce A1 - Sokolov, Igor M. A1 - Metzler, Ralf A1 - Chechkin, Aleksei V. T1 - Beyond monofractional kinetics JF - Chaos, solitons & fractals : applications in science and engineering ; an interdisciplinary journal of nonlinear science N2 - We discuss generalized integro-differential diffusion equations whose integral kernels are not of a simple power law form, and thus these equations themselves do not belong to the family of fractional diffusion equations exhibiting a monoscaling behavior. They instead generate a broad class of anomalous nonscaling patterns, which correspond either to crossovers between different power laws, or to a non-power-law behavior as exemplified by the logarithmic growth of the width of the distribution. We consider normal and modified forms of these generalized diffusion equations and provide a brief discussion of three generic types of integral kernels for each form, namely, distributed order, truncated power law and truncated distributed order kernels. For each of the cases considered we prove the non-negativity of the solution of the corresponding generalized diffusion equation and calculate the mean squared displacement. (C) 2017 Elsevier Ltd. All rights reserved. KW - Distributed order diffusion-wave equations KW - Complete Bernstein function KW - Completely monotone function Y1 - 2017 U6 - https://doi.org/10.1016/j.chaos.2017.05.001 SN - 0960-0779 SN - 1873-2887 VL - 102 SP - 210 EP - 217 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Palyulin, Vladimir V. A1 - Mantsevich, Vladimir N. A1 - Klages, Rainer A1 - Metzler, Ralf A1 - Chechkin, Aleksei V. T1 - Comparison of pure and combined search strategies for single and multiple targets JF - The European physical journal : B, Condensed matter and complex systems N2 - We address the generic problem of random search for a point-like target on a line. Using the measures of search reliability and efficiency to quantify the random search quality, we compare Brownian search with Levy search based on long-tailed jump length distributions. We then compare these results with a search process combined of two different long-tailed jump length distributions. Moreover, we study the case of multiple targets located by a Levy searcher. Y1 - 2017 U6 - https://doi.org/10.1140/epjb/e2017-80372-4 SN - 1434-6028 SN - 1434-6036 VL - 90 SP - 20 EP - 37 PB - Springer CY - New York ER - TY - JOUR A1 - Javanainen, Matti A1 - Martinez-Seara, Hector A1 - Metzler, Ralf A1 - Vattulainen, Ilpo T1 - Diffusion of Integral Membrane Proteins in Protein-Rich Membranes JF - The journal of physical chemistry letters N2 - The lateral diffusion of embedded proteins along lipid membranes in protein-poor conditions has been successfully described in terms of the Saffman-Delbruck (SD) model, which predicts that the protein diffusion coefficient D is weakly dependent on its radius R as D proportional to ln(1/R). However, instead of being protein-poor, native cell membranes are extremely crowded with proteins. On the basis of extensive molecular simulations, we here demonstrate that protein crowding of the membrane at physiological levels leads to deviations from the SD relation and to the emergence of a stronger Stokes-like dependence D proportional to 1/R. We propose that this 1/R law mainly arises due to geometrical factors: smaller proteins are able to avoid confinement effects much better than their larger counterparts. The results highlight that the lateral dynamics in the crowded setting found in native membranes is radically different from protein-poor conditions and plays a significant role in formation of functional multiprotein complexes. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpclett.7b01758 SN - 1948-7185 VL - 8 SP - 4308 EP - 4313 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Caetano, Daniel L. Z. A1 - de Carvalho, Sidney J. A1 - Metzler, Ralf A1 - Cherstvy, Andrey G. T1 - Critical adsorption of periodic and random polyampholytes onto charged surfaces JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - How different are the properties of critical adsorption of polyampholytes and polyelectrolytes onto charged surfaces? How important are the details of polyampholyte charge distribution on the onset of critical adsorption transition? What are the scaling relations governing the dependence of critical surface charge density on salt concentration in the surrounding solution? Here, we employ Metropolis Monte Carlo simulations and uncover the scaling relations for critical adsorption for quenched periodic and random charge distributions along the polyampholyte chains. We also evaluate and discuss the dependence of the adsorbed layer width on solution salinity and details of the charge distribution. We contrast our findings to the known results for polyelectrolyte adsorption onto oppositely charged surfaces, in particular, their dependence on electrolyte concentration. Y1 - 2017 U6 - https://doi.org/10.1039/c7cp04040g SN - 1463-9076 SN - 1463-9084 VL - 19 SP - 23397 EP - 23413 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Herrmann, Carl J. J. A1 - Metzler, Ralf A1 - Engbert, Ralf T1 - A self-avoiding walk with neural delays as a model of fixational eye movements JF - Scientific reports N2 - Fixational eye movements show scaling behaviour of the positional mean-squared displacement with a characteristic transition from persistence to antipersistence for increasing time-lag. These statistical patterns were found to be mainly shaped by microsaccades (fast, small-amplitude movements). However, our re-analysis of fixational eye-movement data provides evidence that the slow component (physiological drift) of the eyes exhibits scaling behaviour of the mean-squared displacement that varies across human participants. These results suggest that drift is a correlated movement that interacts with microsaccades. Moreover, on the long time scale, the mean-squared displacement of the drift shows oscillations, which is also present in the displacement auto-correlation function. This finding lends support to the presence of time-delayed feedback in the control of drift movements. Based on an earlier non-linear delayed feedback model of fixational eye movements, we propose and discuss different versions of a new model that combines a self-avoiding walk with time delay. As a result, we identify a model that reproduces oscillatory correlation functions, the transition from persistence to antipersistence, and microsaccades. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-13489-8 SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Effects of the target aspect ratio and intrinsic reactivity onto diffusive search in bounded domains JF - New journal of physics : the open-access journal for physics N2 - We study the mean first passage time (MFPT) to a reaction event on a specific site in a cylindrical geometry-characteristic, for instance, for bacterial cells, with a concentric inner cylinder representing the nuclear region of the bacterial cell. A similar problem emerges in the description of a diffusive search by a transcription factor protein for a specific binding region on a single strand of DNA. We develop a unified theoretical approach to study the underlying boundary value problem which is based on a self-consistent approximation of the mixed boundary condition. Our approach permits us to derive explicit, novel, closed-form expressions for the MFPT valid for a generic setting with an arbitrary relation between the system parameters. We analyse this general result in the asymptotic limits appropriate for the above-mentioned biophysical problems. Our investigation reveals the crucial role of the target aspect ratio and of the intrinsic reactivity of the binding region, which were disregarded in previous studies. Theoretical predictions are confirmed by numerical simulations. KW - first passage time KW - cylindrical geometry KW - aspect ratio KW - protein search Y1 - 2017 U6 - https://doi.org/10.1088/1367-2630/aa8ed9 SN - 1367-2630 VL - 19 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Chechkin, Aleksei V. A1 - Kantz, Holger A1 - Metzler, Ralf T1 - Ageing effects in ultraslow continuous time random walks JF - The European physical journal : B, Condensed matter and complex systems N2 - In ageing systems physical observables explicitly depend on the time span elapsing between the original initiation of the system and the actual start of the recording of the particle motion. We here study the signatures of ageing in the framework of ultraslow continuous time random walk processes with super-heavy tailed waiting time densities. We derive the density for the forward or recurrent waiting time of the motion as function of the ageing time, generalise the Montroll-Weiss equation for this process, and analyse the ageing behaviour of the ensemble and time averaged mean squared displacements. Y1 - 2017 U6 - https://doi.org/10.1140/epjb/e2017-80270-9 SN - 1434-6028 SN - 1434-6036 VL - 90 PB - Springer CY - New York ER - TY - JOUR A1 - Herrmann, Carl J. J. A1 - Metzler, Ralf T1 - A self-avoiding walk with neural delays as a model of fixational eye movements JF - Scientific reports N2 - Fixational eye movements show scaling behaviour of the positional mean-squared displacement with a characteristic transition from persistence to antipersistence for increasing time-lag. These statistical patterns were found to be mainly shaped by microsaccades (fast, small-amplitude movements). However, our re-analysis of fixational eye-movement data provides evidence that the slow component (physiological drift) of the eyes exhibits scaling behaviour of the mean-squared displacement that varies across human participants. These results suggest that drift is a correlated movement that interacts with microsaccades. Moreover, on the long time scale, the mean-squared displacement of the drift shows oscillations, which is also present in the displacement auto-correlation function. This finding lends support to the presence of time-delayed feedback in the control of drift movements. Based on an earlier non-linear delayed feedback model of fixational eye movements, we propose and discuss different versions of a new model that combines a self-avoiding walk with time delay. As a result, we identify a model that reproduces oscillatory correlation functions, the transition from persistence to antipersistence, and microsaccades. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-13489-8 SN - 2045-2322 VL - 7 SP - 1 EP - 17 PB - Springer Nature CY - London ER - TY - JOUR A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Effects of the target aspect ratio and intrinsic reactivity onto diffusive search in bounded domains JF - New journal of physics N2 - Westudy the mean first passage time (MFPT) to a reaction event on a specific site in a cylindrical geometry—characteristic, for instance, for bacterial cells, with a concentric inner cylinder representing the nuclear region of the bacterial cell. Asimilar problem emerges in the description of a diffusive search by a transcription factor protein for a specific binding region on a single strand of DNA.We develop a unified theoretical approach to study the underlying boundary value problem which is based on a self-consistent approximation of the mixed boundary condition. Our approach permits us to derive explicit, novel, closed-form expressions for the MFPT valid for a generic setting with an arbitrary relation between the system parameters.Weanalyse this general result in the asymptotic limits appropriate for the above-mentioned biophysical problems. Our investigation reveals the crucial role of the target aspect ratio and of the intrinsic reactivity of the binding region, which were disregarded in previous studies. Theoretical predictions are confirmed by numerical simulations. KW - first passage time KW - cylindrical geometry KW - aspect ratio KW - protein search Y1 - 2017 U6 - https://doi.org/10.1088/1367-2630/aa8ed9 SN - 1367-2630 VL - 19 SP - 1 EP - 11 PB - IOP CY - London ER - TY - JOUR A1 - Schwarzl, Maria A1 - Godec, Aljaž A1 - Metzler, Ralf T1 - Quantifying non-ergodicity of anomalous diffusion with higher order moments JF - Scientific reports N2 - Anomalous diffusion is being discovered in a fast growing number of systems. The exact nature of this anomalous diffusion provides important information on the physical laws governing the studied system. One of the central properties analysed for finite particle motion time series is the intrinsic variability of the apparent diffusivity, typically quantified by the ergodicity breaking parameter EB. Here we demonstrate that frequently EB is insufficient to provide a meaningful measure for the observed variability of the data. Instead, important additional information is provided by the higher order moments entering by the skewness and kurtosis. We analyse these quantities for three popular anomalous diffusion models. In particular, we find that even for the Gaussian fractional Brownian motion a significant skewness in the results of physical measurements occurs and needs to be taken into account. Interestingly, the kurtosis and skewness may also provide sensitive estimates of the anomalous diffusion exponent underlying the data. We also derive a new result for the EB parameter of fractional Brownian motion valid for the whole range of the anomalous diffusion parameter. Our results are important for the analysis of anomalous diffusion but also provide new insights into the theory of anomalous stochastic processes. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-03712-x VL - 7 PB - Macmillan Publishers Limited CY - London ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Vinod, Deepak A1 - Aghion, Erez A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Time averaging, ageing and delay analysis of financial time series JF - New journal of physics N2 - We introduce three strategies for the analysis of financial time series based on time averaged observables. These comprise the time averaged mean squared displacement (MSD) as well as the ageing and delay time methods for varying fractions of the financial time series. We explore these concepts via statistical analysis of historic time series for several Dow Jones Industrial indices for the period from the 1960s to 2015. Remarkably, we discover a simple universal law for the delay time averaged MSD. The observed features of the financial time series dynamics agree well with our analytical results for the time averaged measurables for geometric Brownian motion, underlying the famed Black–Scholes–Merton model. The concepts we promote here are shown to be useful for financial data analysis and enable one to unveil new universal features of stock market dynamics. KW - time averaging KW - diffusion KW - geometric Brownian motion KW - financial time series Y1 - 2017 U6 - https://doi.org/10.1088/1367-2630/aa7199 SN - 1367-2630 VL - 19 SP - 1 EP - 11 PB - IOP CY - London ER -