TY - JOUR A1 - Serrano, Paloma A1 - Alawi, Mashal A1 - de Vera, Jean-Pierre Paul A1 - Wagner, Dirk T1 - Response of Methanogenic Archaea from Siberian Permafrost and Non-permafrost Environments to Simulated Mars-like Desiccation and the Presence of Perchlorate JF - Astrobiology N2 - Numerous preflight investigations were necessary prior to the exposure experiment BIOMEX on the International Space Station to test the basic potential of selected microorganisms to resist or even to be active under Mars-like conditions. In this study, methanogenic archaea, which are anaerobic chemolithotrophic microorganisms whose lifestyle would allow metabolism under the conditions on early and recent Mars, were analyzed. Some strains from Siberian permafrost environments have shown a particular resistance. In this investigation, we analyzed the response of three permafrost strains (Methanosarcina soligelidi SMA-21, Candidatus Methanosarcina SMA-17, Candidatus Methanobacterium SMA-27) and two related strains from non-permafrost environments (Methanosarcina mazei, Methanosarcina barkeri) to desiccation conditions (-80 degrees C for 315 days, martian regolith analog simulants S-MRS and P-MRS, a 128-day period of simulated Mars-like atmosphere). Exposure of the different methanogenic strains to increasing concentrations of magnesium perchlorate allowed for the study of their metabolic shutdown in a Mars-relevant perchlorate environment. Survival and metabolic recovery were analyzed by quantitative PCR, gas chromatography, and a new DNA-extraction method from viable cells embedded in S-MRS and P-MRS. All strains survived the two Mars-like desiccating scenarios and recovered to different extents. The permafrost strain SMA-27 showed an increased methanogenic activity by at least 10-fold after deep-freezing conditions. The methanogenic rates of all strains did not decrease significantly after 128 days S-MRS exposure, except for SMA-27, which decreased 10-fold. The activity of strains SMA-17 and SMA-27 decreased after 16 and 60 days P-MRS exposure. Non-permafrost strains showed constant survival and methane production when exposed to both desiccating scenarios. All strains showed unaltered methane production when exposed to the perchlorate concentration reported at the Phoenix landing site (2.4 mM) or even higher concentrations. We conclude that methanogens from (non-)permafrost environments are suitable candidates for potential life in the martian subsurface and therefore are worthy of study after space exposure experiments that approach Mars-like surface conditions. KW - Methanogenic archaea KW - Simulated Mars-like conditions KW - Subfreezing temperatures KW - Martian regolith analogs KW - Perchlorate KW - Permafrost Y1 - 2019 U6 - https://doi.org/10.1089/ast.2018.1877 SN - 1531-1074 SN - 1557-8070 VL - 19 IS - 2 SP - 197 EP - 208 PB - Liebert CY - New Rochelle ER - TY - JOUR A1 - Batista, A. M. M. A1 - Woodhouse, Jason Nicholas A1 - Grossart, Hans-Peter A1 - Giani, A. T1 - Methanogenic archaea associated to Microcystis sp. in field samples and in culture JF - Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica N2 - Cyanobacterial mass developments impact the community composition of heterotrophic microorganisms with far-reaching consequences for biogeochemical and energy cycles of freshwater ecosystems including reservoirs. Here we sought to evaluate the temporal stability of methanogenic archaea in the water column and further scrutinize their associations with cyanobacteria. Monthly samples were collected from October 2009 to December 2010 in hypereutrophic Pampulha reservoir with permanently blooming cyanobacteria, and from January to December 2011 in oligotrophic Volta Grande reservoir with only sporadic cyanobacteria incidence. The presence of archaea in cyanobacterial cultures was investigated by screening numerous strains of Microcystis spp. from these reservoirs as well as from lakes in Europe, Asia, and North-America. We consistently determined the occurrence of archaea, in particular methanogenic archaea, in both reservoirs throughout the year. However, archaea were only associated with two strains (Microcystis sp. UFMG 165 and UFMG 175) recently isolated from these reservoirs. These findings do not implicate archaea in the occurrence of methane in the epilimnion of inland waters, but rather serve to highlight the potential of microhabitats associated with particles, including phytoplankton, to shelter unique microbial communities. KW - Cyanobacteria KW - Methanogenic archaea KW - Bacterial community composition KW - Microcystis sp KW - Tropical reservoir Y1 - 2018 U6 - https://doi.org/10.1007/s10750-018-3655-3 SN - 0018-8158 SN - 1573-5117 VL - 831 IS - 1 SP - 163 EP - 172 PB - Springer CY - Dordrecht ER -