TY - THES A1 - Mbaya Mani, Christian T1 - Functional nanoporous carbon-based materials derived from oxocarbon-metal coordination complexes T1 - Funktionale nanoporöse Kohlenstoffmaterialien auf Basis von Oxokohlenstoff-Metal Koordinationskomplexe N2 - Nanoporous carbon based materials are of particular interest for both science and industry due to their exceptional properties such as a large surface area, high pore volume, high electroconductivity as well as high chemical and thermal stability. Benefiting from these advantageous properties, nanoporous carbons proved to be useful in various energy and environment related applications including energy storage and conversion, catalysis, gas sorption and separation technologies. The synthesis of nanoporous carbons classically involves thermal carbonization of the carbon precursors (e.g. phenolic resins, polyacrylonitrile, poly(vinyl alcohol) etc.) followed by an activation step and/or it makes use of classical hard or soft templates to obtain well-defined porous structures. However, these synthesis strategies are complicated and costly; and make use of hazardous chemicals, hindering their application for large-scale production. Furthermore, control over the carbon materials properties is challenging owing to the relatively unpredictable processes at the high carbonization temperatures. In the present thesis, nanoporous carbon based materials are prepared by the direct heat treatment of crystalline precursor materials with pre-defined properties. This synthesis strategy does not require any additional carbon sources or classical hard- or soft templates. The highly stable and porous crystalline precursors are based on coordination compounds of the squarate and croconate ions with various divalent metal ions including Zn2+, Cu2+, Ni2+, and Co2+, respectively. Here, the structural properties of the crystals can be controlled by the choice of appropriate synthesis conditions such as the crystal aging temperature, the ligand/metal molar ratio, the metal ion, and the organic ligand system. In this context, the coordination of the squarate ions to Zn2+ yields porous 3D cube crystalline particles. The morphology of the cubes can be tuned from densely packed cubes with a smooth surface to cubes with intriguing micrometer-sized openings and voids which evolve on the centers of the low index faces as the crystal aging temperature is raised. By varying the molar ratio, the particle shape can be changed from truncated cubes to perfect cubes with right-angled edges. These crystalline precursors can be easily transformed into the respective carbon based materials by heat treatment at elevated temperatures in a nitrogen atmosphere followed by a facile washing step. The resulting carbons are obtained in good yields and possess a hierarchical pore structure with well-organized and interconnected micro-, meso- and macropores. Moreover, high surface areas and large pore volumes of up to 1957 m2 g-1 and 2.31 cm3 g-1 are achieved, respectively, whereby the macroscopic structure of the precursors is preserved throughout the whole synthesis procedure. Owing to these advantageous properties, the resulting carbon based materials represent promising supercapacitor electrode materials for energy storage applications. This is exemplarily demonstrated by employing the 3D hierarchical porous carbon cubes derived from squarate-zinc coordination compounds as electrode material showing a specific capacitance of 133 F g-1 in H2SO4 at a scan rate of 5 mV s-1 and retaining 67% of this specific capacitance when the scan rate is increased to 200 mV s-1. In a further application, the porous carbon cubes derived from squarate-zinc coordination compounds are used as high surface area support material and decorated with nickel nanoparticles via an incipient wetness impregnation. The resulting composite material combines a high surface area, a hierarchical pore structure with high functionality and well-accessible pores. Moreover, owing to their regular micro-cube shape, they allow for a good packing of a fixed-bed flow reactor along with high column efficiency and a minimized pressure drop throughout the packed reactor. Therefore, the composite is employed as heterogeneous catalyst in the selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran showing good catalytic performance and overcoming the conventional problem of column blocking. Thinking about the rational design of 3D carbon geometries, the functions and properties of the resulting carbon-based materials can be further expanded by the rational introduction of heteroatoms (e.g. N, B, S, P, etc.) into the carbon structures in order to alter properties such as wettability, surface polarity as well as the electrochemical landscape. In this context, the use of crystalline materials based on oxocarbon-metal ion complexes can open a platform of highly functional materials for all processes that involve surface processes. N2 - Nanoporöse Kohlenstoffmaterialien zeichnen sich u. a. durch ihre außergewöhnlichen Eigenschaften aus wie z. B. hohe Oberfläche, hohes Porenvolumen, hohe elektrische Leitfähigkeit und auch hohe chemische und thermische Stabilität. Aufgrund dessen finden sie Anwendung in den unterschiedlichsten Bereichen von der Speicherung elektrischer Energie bis hin zur Katalyse und Gasspeicherung. Die klassische Synthese von porösen Kohlenstoffmaterialien basiert u. a. auf der Nutzung von sogenannten anorganischen bzw. organischen Templaten und/oder chemischen Aktivierungsagenzien. Allerdings gelten diese Methoden eher als kompliziert, kostspielig und umweltschädlich. Außerdem wird eine gezielte Kontrolle der Produkteigenschaften durch die zahlreichen Prozesse erschwert, die sich bei den hohen Karbonisierungstemperaturen abspielen und folglich die Materialeigenschaften unvorhersehbar verändern können. In der vorliegenden Arbeit wird ein alternatives Konzept für die Synthese von nanoporösen Kohlenstoffmaterialien mit gezielt einstellbaren Eigenschaften vorgestellt. Diese basiert auf der Nutzung von kristallinen Vorläufermaterialien, die aus der Koordination von den Anionen der Quadratsäure bzw. der Krokonsäure mit verschiedenen Metallionen (Zn2+, Cu2+, Ni2+ und Co2+) resultieren. Diese haben den Vorteil, dass Eigenschaften wie z. B. die Partikelmorphologie und Porosität gezielt durch die Wahl geeigneter Syntheseparameter (z. B. Temperatur, molares Verhältnis, Metallion und Ligand) eingestellt werden können. Beispielsweise führen Koordinationskomplexe von der Quadratsäure mit Zn2+ in Wasser zu porösen 3D würfelförmigen Mikrokristallen, die durch einfache thermische Behandlung unter Schutzgasatmosphäre zu den entsprechenden Kompositen umgewandelt werden. Ein anschließender Waschschritt führt zu den entsprechenden Kohlenstoffmaterialien unter Erhalt der makroskopischen Struktur der kristallinen Vorläufermaterialien. In diesem Zusammenhang weisen die resultierenden Kohlenstoffe ebenfalls eine 3D Würfelform mit einer hierarchischen Porenstruktur bestehend aus vernetzten Mikro-, Meso- und Makroporen auf. Ferner besitzen die Kohlenstoffe hohe Oberflächen und Porenvolumen von bis zu 1.957 m2 g-1 bzw. 2,31 cm3 g-1. Um die Vorteile dieser Eigenschaften zu demonstrieren, werden sie als Elektrodenmaterial für Superkondensatoren getestet und zeigen dabei vielversprechende Kapazitäten. Außerdem, werden sie auch als Trägermaterial für die Immobilisierung von Nickel-Nanopartikel verwendet und als heterogene Katalysatoren in der selektiven Hydrierung von 5-hydroxymethylfurfural zu 2,5-dimethylfuran in einem Festbettreaktor eingesetzt. Dabei wird eine gute Katalysatorleistung (Produktivität) bei minimalem Druckabfall in der Reaktorsäule erreicht. KW - squaric acid KW - Quadratsäure KW - mesocrystals KW - Mesokristalle KW - nanoporöser Kohlenstoffpartikel KW - nanoporous carbon particles KW - Nanopartikel KW - nanoparticles KW - Koordinationskomplexe KW - coordination complexes KW - oxocarbon KW - Oxo-Kohlenstoff Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407866 ER - TY - JOUR A1 - Chen, Zupeng A1 - Savateev, Aleksandr A1 - Pronkin, Sergey A1 - Papaefthimiou, Vasiliki A1 - Wolff, Christian Michael A1 - Willinger, Marc Georg A1 - Willinger, Elena A1 - Neher, Dieter A1 - Antonietti, Markus A1 - Dontsova, Dariya T1 - "The Easier the Better" Preparation of Efficient Photocatalysts-Metastable Poly(heptazine imide) Salts JF - Advanced materials N2 - Cost-efficient, visible-light-driven hydrogen production from water is an attractive potential source of clean, sustainable fuel. Here, it is shown that thermal solid state reactions of traditional carbon nitride precursors (cyanamide, melamine) with NaCl, KCl, or CsCl are a cheap and straightforward way to prepare poly(heptazine imide) alkali metal salts, whose thermodynamic stability decreases upon the increase of the metal atom size. The chemical structure of the prepared salts is confirmed by the results of X-ray photoelectron and infrared spectroscopies, powder X-ray diffraction and electron microscopy studies, and, in the case of sodium poly(heptazine imide), additionally by atomic pair distribution function analysis and 2D powder X-ray diffraction pattern simulations. In contrast, reactions with LiCl yield thermodynamically stable poly(triazine imides). Owing to the metastability and high structural order, the obtained heptazine imide salts are found to be highly active photo-catalysts in Rhodamine B and 4-chlorophenol degradation, and Pt-assisted sacrificial water reduction reactions under visible light irradiation. The measured hydrogen evolution rates are up to four times higher than those provided by a benchmark photocatalyst, mesoporous graphitic carbon nitride. Moreover, the products are able to photocatalytically reduce water with considerable reaction rates, even when glycerol is used as a sacrificial hole scavenger. KW - carbon nitride KW - glycerol oxidation KW - mesocrystals KW - poly(heptazine imide) KW - water reduction reactions Y1 - 2017 U6 - https://doi.org/10.1002/adma.201700555 SN - 0935-9648 SN - 1521-4095 VL - 29 SP - 21800 EP - 21806 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Popovic, Jelena T1 - Novel lithium iron phosphate materials for lithium-ion batteries T1 - Neuartige Lithium-Eisen-Phosphat-Materialien für Lithium-Ionen-Batterien N2 - Conventional energy sources are diminishing and non-renewable, take million years to form and cause environmental degradation. In the 21st century, we have to aim at achieving sustainable, environmentally friendly and cheap energy supply by employing renewable energy technologies associated with portable energy storage devices. Lithium-ion batteries can repeatedly generate clean energy from stored materials and convert reversely electric into chemical energy. The performance of lithium-ion batteries depends intimately on the properties of their materials. Presently used battery electrodes are expensive to be produced; they offer limited energy storage possibility and are unsafe to be used in larger dimensions restraining the diversity of application, especially in hybrid electric vehicles (HEVs) and electric vehicles (EVs). This thesis presents a major progress in the development of LiFePO4 as a cathode material for lithium-ion batteries. Using simple procedure, a completely novel morphology has been synthesized (mesocrystals of LiFePO4) and excellent electrochemical behavior was recorded (nanostructured LiFePO4). The newly developed reactions for synthesis of LiFePO4 are single-step processes and are taking place in an autoclave at significantly lower temperature (200 deg. C) compared to the conventional solid-state method (multi-step and up to 800 deg. C). The use of inexpensive environmentally benign precursors offers a green manufacturing approach for a large scale production. These newly developed experimental procedures can also be extended to other phospho-olivine materials, such as LiCoPO4 and LiMnPO4. The material with the best electrochemical behavior (nanostructured LiFePO4 with carbon coating) was able to delive a stable 94% of the theoretically known capacity. N2 - Konventionelle Energiequellen sind weder nachwachsend und daher nachhaltig nutzbar, noch weiterhin langfristig verfügbar. Sie benötigen Millionen von Jahren um gebildet zu werden und verursachen in ihrer Nutzung negative Umwelteinflüsse wie starke Treibhausgasemissionen. Im 21sten Jahrhundert ist es unser Ziel nachhaltige und umweltfreundliche, sowie möglichst preisgünstige Energiequellen zu erschließen und nutzen. Neuartige Technologien assoziiert mit transportablen Energiespeichersystemen spielen dabei in unserer mobilen Welt eine große Rolle. Li-Ionen Batterien sind in der Lage wiederholt Energie aus entsprechenden Prozessen nutzbar zu machen, indem sie reversibel chemische in elektrische Energie umwandeln. Die Leistung von Li-Ionen Batterien hängen sehr stark von den verwendeten Funktionsmaterialien ab. Aktuell verwendete Elektrodenmaterialien haben hohe Produktionskosten, verfügen über limitierte Energiespeichekapazitäten und sind teilweise gefährlich in der Nutzung für größere Bauteile. Dies beschränkt die Anwendungsmöglichkeiten der Technologie insbesondere im Gebiet der hybriden Fahrzeugantriebe. Die vorliegende Dissertation beschreibt bedeutende Fortschritte in der Entwicklung von LiFePO4 als Kathodenmaterial für Li-Ionen Batterien. Mithilfe einfacher Syntheseprozeduren konnten eine vollkommen neue Morphologie (mesokristallines LiFePo4) sowie ein nanostrukturiertes Material mit exzellenten elektrochemischen Eigenschaften hergestellt werden. Die neu entwickelten Verfahren zur Synthese von LiFePo4 sind einschrittig und bei signifikant niedrigeren Temperaturen im Vergleich zu konventionellen Methoden. Die Verwendung von preisgünstigen und umweltfreundlichen Ausgangsstoffen stellt einen grünen Herstellungsweg für die large scale Synthese dar. Mittels des neuen Synthesekonzepts konnte meso- und nanostrukturiertes LiFe PO4 generiert werden. Die Methode ist allerdings auch auf andere phospho-olivin Materialien (LiCoPO4, LiMnPO4) anwendbar. Batterietests der besten Materialien (nanostrukturiertes LiFePO4 mit Kohlenstoffnanobeschichtung) ergeben eine mögliche Energiespeicherung von 94%. KW - Li-Ionen-Akkus KW - Kathode KW - LiFePO4 KW - Mesokristalle KW - Nanopartikel KW - Li-ion batteries KW - cathode KW - LiFePO4 KW - mesocrystals KW - nanoparticles Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-54591 ER -