TY - JOUR A1 - Brotman, Yariv A1 - Landau, Udi A1 - Pnini, Smadar A1 - Lisec, Jan A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd A1 - Zilberstein, Aviah A1 - Willmitzer, Lothar A1 - Chet, Ilan A1 - Viterbo, Ada T1 - The LysM Receptor-Like Kinase LysM RLK1 is required to activate defense and abiotic-stress responses induced by overexpression of fungal chitinases in arabidopsis plants JF - Molecular plant N2 - Application of crab shell chitin or pentamer chitin oligosaccharide to Arabidopsis seedlings increased tolerance to salinity in wild-type but not in knockout mutants of the LysM Receptor-Like Kinase1 (CERK1/LysM RLK1) gene, known to play a critical role in signaling defense responses induced by exogenous chitin. Arabidopsis plants overexpressing the endochitinase chit36 and hexoaminidase excy1 genes from the fungus Trichoderma asperelleoides T203 showed increased tolerance to salinity, heavy-metal stresses, and Botrytis cinerea infection. Resistant lines, overexpressing fungal chitinases at different levels, were outcrossed to lysm rlk1 mutants. Independent homozygous hybrids lost resistance to biotic and abiotic stresses, despite enhanced chitinase activity. Expression analysis of 270 stress-related genes, including those induced by reactive oxygen species (ROS) and chitin, revealed constant up-regulation (at least twofold) of 10 genes in the chitinase-overexpressing line and an additional 76 salt-induced genes whose expression was not elevated in the lysm rlk1 knockout mutant or the hybrids harboring the mutation. These findings elucidate that chitin-induced signaling mediated by LysM RLK1 receptor is not limited to biotic stress response but also encompasses abiotic-stress signaling and can be conveyed by ectopic expression of chitinases in plants. KW - abiotic stress KW - chitin-induced signaling KW - chitinases KW - LysM receptor kinase KW - Trichoderma Y1 - 2012 U6 - https://doi.org/10.1093/mp/sss021 SN - 1674-2052 VL - 5 IS - 5 SP - 1113 EP - 1124 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Knox-Brown, Patrick A1 - Rindfleisch, Tobias A1 - Günther, Anne A1 - Balow, Kim A1 - Bremer, Anne A1 - Walther, Dirk A1 - Miettinen, Markus S. A1 - Hincha, Dirk K. A1 - Thalhammer, Anja T1 - Similar Yet Different BT - Structural and Functional Diversity among Arabidopsis thaliana LEA_4 Proteins JF - International Journal of Molecular Sciences N2 - The importance of intrinsically disordered late embryogenesis abundant (LEA) proteins in the tolerance to abiotic stresses involving cellular dehydration is undisputed. While structural transitions of LEA proteins in response to changes in water availability are commonly observed and several molecular functions have been suggested, a systematic, comprehensive and comparative study of possible underlying sequence-structure-function relationships is still lacking. We performed molecular dynamics (MD) simulations as well as spectroscopic and light scattering experiments to characterize six members of two distinct, lowly homologous clades of LEA_4 family proteins from Arabidopsis thaliana. We compared structural and functional characteristics to elucidate to what degree structure and function are encoded in LEA protein sequences and complemented these findings with physicochemical properties identified in a systematic bioinformatics study of the entire Arabidopsis thaliana LEA_4 family. Our results demonstrate that although the six experimentally characterized LEA_4 proteins have similar structural and functional characteristics, differences concerning their folding propensity and membrane stabilization capacity during a freeze/thaw cycle are obvious. These differences cannot be easily attributed to sequence conservation, simple physicochemical characteristics or the abundance of sequence motifs. Moreover, the folding propensity does not appear to be correlated with membrane stabilization capacity. Therefore, the refinement of LEA_4 structural and functional properties is likely encoded in specific patterns of their physicochemical characteristics. KW - IDP KW - LEA protein KW - abiotic stress KW - dehydration KW - conformational rearrangement KW - membrane stabilization KW - sequence-structure-function relationship Y1 - 2020 U6 - https://doi.org/10.3390/ijms21082794 SN - 1422-0067 VL - 21 IS - 8 PB - Molecular Diversity Preservation International CY - Basel ER - TY - JOUR A1 - Schmidt, Romy A1 - Schippers, Jos H. M. A1 - Mieulet, Delphine A1 - Obata, Toshihiro A1 - Fernie, Alisdair R. A1 - Guiderdoni, Emmanuel A1 - Müller-Röber, Bernd T1 - Multipass, a rice R2R3-type MYB transcription factor, regulates adaptive growth by integrating multiple hormonal pathways JF - The plant journal N2 - Growth regulation is an important aspect of plant adaptation during environmental perturbations. Here, the role of MULTIPASS (OsMPS), an R2R3-type MYB transcription factor of rice, was explored. OsMPS is induced by salt stress and expressed in vegetative and reproductive tissues. Over-expression of OsMPS reduces growth under non-stress conditions, while knockdown plants display increased biomass. OsMPS expression is induced by abscisic acid and cytokinin, but is repressed by auxin, gibberellin and brassinolide. Growth retardation caused by OsMPS over-expression is partially restored by auxin application. Expression profiling revealed that OsMPS negatively regulates the expression of EXPANSIN (EXP) and cell-wall biosynthesis as well as phytohormone signaling genes. Furthermore, the expression of OsMPS-dependent genes is regulated by auxin, cytokinin and abscisic acid. Moreover, we show that OsMPS is a direct upstream regulator of OsEXPA4, OsEXPA8, OsEXPB2, OsEXPB3, OsEXPB6 and the endoglucanase genes OsGLU5 and OsGLU14. The multiple responses of OsMPS and its target genes to various hormones suggest an integrative function of OsMPS in the cross-talk between phytohormones and the environment to regulate adaptive growth. KW - development KW - expansin KW - transcription KW - Oryza sativa KW - hormone KW - abiotic stress Y1 - 2013 U6 - https://doi.org/10.1111/tpj.12286 SN - 0960-7412 SN - 1365-313X VL - 76 IS - 2 SP - 258 EP - 273 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Omidbakhshfard, Mohammad Amin A1 - Proost, Sebastian A1 - Fujikura, Ushio A1 - Müller-Röber, Bernd T1 - Growth-Regulating Factors (GRFs): A Small Transcription Factor Family with Important Functions in Plant Biology JF - Molecular plant N2 - Growth-regulating factors (GRFs) are plant-specific transcription factors that were originally identified for their roles in stem and leaf development, but recent studies highlight them to be similarly important for other central developmental processes including flower and seed formation, root development, and the coordination of growth processes under adverse environmental conditions. The expression of several GRFs is controlled by microRNA miR396, and the GRF-miRNA396 regulatory module appears to be central to several of these processes. In addition, transcription factors upstream of GRFs and miR396 have been discovered, and gradually downstream target genes of GRFs are being unraveled. Here, we review the current knowledge of the biological functions performed by GRFs and survey available molecular data to illustrate how they exert their roles at the cellular level. KW - abiotic stress KW - chromatin remodeling KW - flower development KW - growth regulation KW - leaf development KW - miRNA Y1 - 2015 U6 - https://doi.org/10.1016/j.molp.2015.01.013 SN - 1674-2052 SN - 1752-9867 VL - 8 IS - 7 SP - 998 EP - 1010 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Gupta, Saurabh A1 - Dong, Yanni A1 - Dijkwel, Paul P. A1 - Müller-Röber, Bernd A1 - Gechev, Tsanko S. T1 - Genome-Wide Analysis of ROS Antioxidant Genes in Resurrection Species Suggest an Involvement of Distinct ROS Detoxification Systems during Desiccation JF - International Journal of Molecular Sciences N2 - Abiotic stress is one of the major threats to plant crop yield and productivity. When plants are exposed to stress, production of reactive oxygen species (ROS) increases, which could lead to extensive cellular damage and hence crop loss. During evolution, plants have acquired antioxidant defense systems which can not only detoxify ROS but also adjust ROS levels required for proper cell signaling. Ascorbate peroxidase (APX), glutathione peroxidase (GPX), catalase (CAT) and superoxide dismutase (SOD) are crucial enzymes involved in ROS detoxification. In this study, 40 putative APX, 28 GPX, 16 CAT, and 41 SOD genes were identified from genomes of the resurrection species Boea hygrometrica, Selaginella lepidophylla, Xerophyta viscosa, and Oropetium thomaeum, and the mesophile Selaginella moellendorffi. Phylogenetic analyses classified the APX, GPX, and SOD proteins into five clades each, and CAT proteins into three clades. Using co-expression network analysis, various regulatory modules were discovered, mainly involving glutathione, that likely work together to maintain ROS homeostasis upon desiccation stress in resurrection species. These regulatory modules also support the existence of species-specific ROS detoxification systems. The results suggest molecular pathways that regulate ROS in resurrection species and the role of APX, GPX, CAT and SOD genes in resurrection species during stress. KW - abiotic stress KW - desiccation KW - resurrection plants KW - ROS KW - ascorbate peroxidase KW - glutathione peroxidase KW - catalase KW - superoxide dismutase Y1 - 2019 U6 - https://doi.org/10.3390/ijms20123101 SN - 1422-0067 SN - 1661-6596 VL - 20 IS - 12 PB - Molecular Diversity Preservation International CY - Basel ER - TY - JOUR A1 - Biermann, Robin Tim A1 - Bach, Linh T. A1 - Kläring, Hans-Peter A1 - Baldermann, Susanne A1 - Börnke, Frederik A1 - Schwarz, Dietmar T1 - Discovering tolerance-A computational approach to assess abiotic stress tolerance in tomato under greenhouse conditions JF - Frontiers in sustainable food systems N2 - Modern plant cultivars often possess superior growth characteristics, but within a limited range of environmental conditions. Due to climate change, crops will be exposed to distressing abiotic conditions more often in the future, out of which heat stress is used as example for this study. To support identification of tolerant germplasm and advance screening techniques by a novel multivariate evaluation method, a diversity panel of 14 tomato genotypes, comprising Mediterranean landraces of Solanum lycopersicum, the cultivar "Moneymaker" and Solanum pennellii LA0716, which served as internal references, was assessed toward their tolerance against long-term heat stress. After 5 weeks of growth, young tomato plants were exposed to either control (22/18 degrees C) or heat stress (35/25 degrees C) conditions for 2 weeks. Within this period, water consumption, leaf angles and leaf color were determined. Additionally, gas exchange and leaf temperature were investigated. Finally, biomass traits were recorded. The resulting multivariate dataset on phenotypic plasticity was evaluated to test the hypothesis, that more tolerant genotypes have less affected phenotypes upon stress adaptation. For this, a cluster-analysis-based approach was developed that involved a principal component analysis (PCA), dimension reduction and determination of Euclidean distances. These distances served as measure for the phenotypic plasticity upon heat stress. Statistical evaluation allowed the identification and classification of homogeneous groups consisting each of four putative more or less heat stress tolerant genotypes. The resulting classification of the internal references as "tolerant" highlights the applicability of our proposed tolerance assessment model. PCA factor analysis on principal components 1-3 which covered 76.7% of variance within the phenotypic data, suggested that some laborious measure such as the gas exchange might be replaced with the determination of leaf temperature in larger heat stress screenings. Hence, the overall advantage of the presented method is rooted in its suitability of both, planning and executing screenings for abiotic stress tolerance using multivariate phenotypic data to overcome the challenge of identifying abiotic stress tolerant plants from existing germplasms and promote sustainable agriculture for the future. KW - abiotic stress KW - breeding KW - heat stress KW - phenotyping KW - Solanum KW - lycopersicum KW - screening KW - stress tolerance Y1 - 2022 U6 - https://doi.org/10.3389/fsufs.2022.878013 SN - 2571-581X VL - 6 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Bäurle, Isabel A1 - Trindade, Inês T1 - Chromatin regulation of somatic abiotic stress memory JF - Journal of experimental botany N2 - In nature, plants are often subjected to periods of recurrent environmental stress that can strongly affect their development and productivity. To cope with these conditions, plants can remember a previous stress, which allows them to respond more efficiently to a subsequent stress, a phenomenon known as priming. This ability can be maintained at the somatic level for a few days or weeks after the stress is perceived, suggesting that plants can store information of a past stress during this recovery phase. While the immediate responses to a single stress event have been extensively studied, knowledge on priming effects and how stress memory is stored is still scarce. At the molecular level, memory of a past condition often involves changes in chromatin structure and organization, which may be maintained independently from transcription. In this review, we will summarize the most recent developments in the field and discuss how different levels of chromatin regulation contribute to priming and plant abiotic stress memory. KW - abiotic stress KW - chromatin regulation KW - heat stress memory KW - histone KW - modifications KW - priming KW - transcriptional memory KW - vernalization Y1 - 2020 U6 - https://doi.org/10.1093/jxb/eraa098 SN - 0022-0957 SN - 1460-2431 VL - 71 IS - 17 SP - 5269 EP - 5279 PB - Oxford Univiversity Press CY - Oxford ER -