TY - THES A1 - Küken, Anika T1 - Predictions from constraint-based approaches including enzyme kinetics N2 - The metabolic state of an organism reflects the entire phenotype that is jointly affected by genetic and environmental changes. Due to the complexity of metabolism, system-level modelling approaches have become indispensable tools to obtain new insights into biological functions. In particular, simulation and analysis of metabolic networks using constraint-based modelling approaches have helped the analysis of metabolic fluxes. However, despite ongoing improvements in prediction of reaction flux through a system, approaches to directly predict metabolite concentrations from large-scale metabolic networks remain elusive. In this thesis, we present a computational approach for inferring concentration ranges from genome-scale metabolic models endowed with mass action kinetics. The findings specify a molecular mechanism underling facile control of concentration ranges for components in large-scale metabolic networks. Most importantly, an extended version of the approach can be used to predict concentration ranges without knowledge of kinetic parameters, provided measurements of concentrations in a reference state. We show that the approach is applicable with large-scale kinetic and stoichiometric metabolic models of organisms from different kingdoms of life. By challenging the predictions of concentration ranges in the genome-scale metabolic network of Escherichia coli with real-world data sets, we further demonstrate the prediction power and limitations of the approach. To predict concentration ranges in other species, e.g. model plant species Arabidopsis thaliana, we would rely on estimates of kinetic parameters (i.e. enzyme catalytic rates) since plant-specific enzyme catalytic rates are poorly documented. Using the constraint-based approach of Davidi et al. for estimation of enzyme catalytic rates, we obtain values for 168 plant enzymes. The approach depends on quantitative proteomics data and flux estimates obtained from constraint-based model of plant leaf metabolism integrating maximal rates of selected enzymes, plant-specific constraints on fluxes through canonical pathways, and growth measurements from Arabidopsis thaliana rosette under ten conditions. We demonstrate a low degree of plant enzyme saturation, supported by the agreement between concentrations of nicotinamide adenine dinucleotide, adenosine triphosphate, and glyceraldehyde 3-phosphate, based on our maximal in vivo catalytic rates, and available quantitative metabolomics data. Hence, our results show genome-wide estimation for plant-specific enzyme catalytic rates is feasible. These can now be readily employed to study resource allocation, to predict enzyme and metabolite concentrations using recent constrained-based modelling approaches. Constraint-based methods do not directly account for kinetic mechanisms and corresponding parameters. Therefore, a number of workflows have already been proposed to approximate reaction kinetics and to parameterize genome-scale kinetic models. We present a systems biology strategy to build a fully parameterized large-scale model of Chlamydomonas reinhardtii accounting for microcompartmentalization in the chloroplast stroma. Eukaryotic algae comprise a microcompartment, the pyrenoid, essential for the carbon concentrating mechanism (CCM) that improves their photosynthetic performance. Since the experimental study of the effects of microcompartmentation on metabolic pathways is challenging, we employ our model to investigate compartmentation of fluxes through the Calvin-Benson cycle between pyrenoid and stroma. Our model predicts that ribulose-1,5-bisphosphate, the substrate of Rubisco, and 3-phosphoglycerate, its product, diffuse in and out of the pyrenoid. We also find that there is no major diffusional barrier to metabolic flux between the pyrenoid and stroma. Therefore, our computational approach represents a stepping stone towards understanding of microcompartmentalized CCM in other organisms. This thesis provides novel strategies to use genome-scale metabolic networks to predict and integrate metabolite concentrations. Therefore, the presented approaches represent an important step in broadening the applicability of large-scale metabolic models to a range of biotechnological and medical applications. N2 - Der Stoffwechsel eines Organismus spiegelt den gesamten Phänotyp wieder, welcher durch genetische und umweltbedingte Veränderungen beeinflusst wird. Aufgrund der Komplexität des Stoffwechsels sind Modellierungsansätze, welche das ganzheitliches System betrachten, zu unverzichtbaren Instrumenten geworden, um neue Einblicke in biologische Funktionen zu erhalten. Insbesondere die Simulation und Analyse von Stoffwechselnetzwerken mithilfe von Constraint-basierten Modellierungsansätzen hat die Analyse von Stoffwechselflüssen erleichtert. Trotz kontinuierlicher Verbesserungen bei der Vorhersage des Reaktionsflusses durch ein System, sind Ansätze zur direkten Vorhersage von Metabolitkonzentrationen aus metabolischen Netzwerken kaum vorhanden. In dieser Arbeit stellen wir einen Ansatz vor, mit welchem Konzentrationsbereiche aus genomweiten metabolischen Netzwerken, die mit einer Massenwirkungskinetik ausgestattet sind, abgeleitet werden können. Die Ergebnisse zeigen einen molekularen Mechanismus auf, welcher der Steuerung von Konzentrationsbereichen für Komponenten in metabolischen Netzwerken zugrunde liegt. Eine erweiterte Version des Ansatzes kann verwendet werden, um Konzentrationsbereiche ohne Kenntnis der kinetischen Parameter vorherzusagen, vorausgesetzt, dass Messungen von Konzentrationen in einem Referenzzustand vorhanden sind. Wir zeigen, dass der Ansatz mit kinetischen und stöchiometrischen Stoffwechselmodellen von Organismen aus verschiedenen taxonomischen Reichen anwendbar ist. Indem wir die Vorhersagen von Konzentrationsbereichen im genomweiten Stoffwechselnetzwerk von Escherichia coli mit realen Datensätzen validieren, demonstrieren wir die Vorhersagekraft und die Grenzen des Ansatzes. Um Konzentrationsbereiche in anderen Spezies vorherzusagen, z.B. der Modellpflanzenspezies Arabidopsis thaliana, stützen wir uns auf Schätzungen der kinetischen Parameter (d.h. der katalytischen Enzymraten), da tatsächlich gemessene, pflanzenspezifische katalytische Enzymraten nur unzureichend dokumentiert sind. Unter Verwendung des Constraint-basierten Ansatzes von Davidi et al. zur Abschätzung der katalytischen Enzymraten erhalten wir Werte für 168 pflanzliche Enzyme. Der Ansatz hängt von quantitativen Proteomikdaten und Schätzungen des Reaktionsflusses ab, die aus einem Constraint-basierten Modell des Pflanzenblattmetabolismus unter Einbeziehung der maximalen Raten ausgewählter Enzyme, pflanzenspezifischen Einschränkungen des Flusses durch kanonische Pfade und Wachstumsmessungen aus Rosetten von Arabidopsis thaliana unter zehn Bedingungen erhalten wurden. Wir fanden einen niedrigen Grad an Sättigung der Pflanzenenzyme, der durch die Übereinstimmung zwischen den Konzentrationen von Nicotinamidadenindinukleotid, Adenosintriphosphat und Glycerinaldehyd-3-phosphat auf der Grundlage unserer maximalen in vivo katalytischen Raten und den verfügbaren quantitativen Metabolomikdaten gestützt wird. Daher zeigen unsere Ergebnisse, dass genomweite Schätzungen für pflanzenspezifische Enzymkatalyseraten möglich sind. Diese können nun leicht verwendet werden, um die Ressourcenzuweisung zu untersuchen und die Enzym- und Metabolitenkonzentrationen unter Verwendung neuerer Constraint-basierter Modellierungsansätze vorherzusagen. Constraint-basierte Methoden berücksichtigen kinetische Mechanismen und entsprechende Parameter nicht direkt. Daher wurden einige Methoden entwickelt, welche die Reaktionskinetik approximieren und systemumfassende kinetische Modelle zu parametrisieren. Wir präsentieren eine systembiologische Strategie zur Erstellung eines vollständig parametrisierten Modells von Chlamydomonas reinhardtii, welches die Mikrokompartimentierung im Chloroplaststroma berücksichtigt. Eukaryotische Algen besitzen ein Mikrokompartiment, den Pyrenoiden, der für den Kohlenstoffkonzentrationsmechanismus (KKM) unerlässlich ist und die Photosyntheseleistung verbessert. Die experimentelle Untersuchung der Auswirkungen der Mikrokompartimentierung auf Stoffwechselwege stellt eine Herausforderung dar. Daher verwenden wir unser Modell um die Kompartimentierung von Reaktionsflüssen durch den Calvin-Benson-Zyklus zwischen Pyrenoid und Stroma zu untersuchen. Unser Modell sagt voraus, dass Ribulose-1,5-Bisphosphat, das Substrat von Rubisco, und 3-Phosphoglycerat , das Produkt, in den Pyrenoid hinein und aus ihm heraus diffundieren. Weiter stellen wir fest, dass es keine wesentliche Diffusionsbarriere zwischen dem Pyrenoid und dem Stroma gibt. Somit bietet unser Ansatz eine Möglichkeit um ein Verständnis des mikrokompartimentierten KKM auch in anderen Organismen zu erlangen. Diese Dissertation zeigt neue Strategien um metabolische Netzwerke zur Vorhersage von Metabolitkonzentrationen zu nutzen und selbige zu integrieren. Daher stellen die Ansätze einen wichtigen Schritt zur Anwendbarkeit von genomweiten Stoffwechselmodellen auf eine Reihe von biotechnologischen und medizinischen Anwendungen dar. KW - constraint-based modeling KW - metabolism KW - metabolic networks Y1 - 2020 ER - TY - THES A1 - Robaina Estevez, Semidan T1 - Context-specific metabolic predictions T1 - Kontextspezifische metabolische Vorhersagen BT - computational methods and applications BT - Berechnungsmethoden und Anwendungen N2 - All life-sustaining processes are ultimately driven by thousands of biochemical reactions occurring in the cells: the metabolism. These reactions form an intricate network which produces all required chemical compounds, i.e., metabolites, from a set of input molecules. Cells regulate the activity through metabolic reactions in a context-specific way; only reactions that are required in a cellular context, e.g., cell type, developmental stage or environmental condition, are usually active, while the rest remain inactive. The context-specificity of metabolism can be captured by several kinds of experimental data, such as by gene and protein expression or metabolite profiles. In addition, these context-specific data can be assimilated into computational models of metabolism, which then provide context-specific metabolic predictions. This thesis is composed of three individual studies focussing on context-specific experimental data integration into computational models of metabolism. The first study presents an optimization-based method to obtain context-specific metabolic predictions, and offers the advantage of being fully automated, i.e., free of user defined parameters. The second study explores the effects of alternative optimal solutions arising during the generation of context-specific metabolic predictions. These alternative optimal solutions are metabolic model predictions that represent equally well the integrated data, but that can markedly differ. This study proposes algorithms to analyze the space of alternative solutions, as well as some ways to cope with their impact in the predictions. Finally, the third study investigates the metabolic specialization of the guard cells of the plant Arabidopsis thaliana, and compares it with that of a different cell type, the mesophyll cells. To this end, the computational methods developed in this thesis are applied to obtain metabolic predictions specific to guard cell and mesophyll cells. These cell-specific predictions are then compared to explore the differences in metabolic activity between the two cell types. In addition, the effects of alternative optima are taken into consideration when comparing the two cell types. The computational results indicate a major reorganization of the primary metabolism in guard cells. These results are supported by an independent 13C labelling experiment. N2 - Alle lebenserhaltenden Prozesse werden durch tausende biochemische Reaktionen in der Zelle bestimmt, welche den Metabolismus charakterisieren. Diese Reaktionen bilden ein komplexes Netzwerk, welches alle notwendigen chemischen Verbindungen, die sogenannten Metabolite, aus einer bestimmten Menge an Ausgangsmolekülen produziert Zellen regulieren ihren Stoffwechsel kontextspezifisch, dies bedeutet, dass nur Reaktionen die in einem zellulären Kontext, zum Beispiel Zelltyp, Entwicklungsstadium oder verschiedenen Umwelteinflüssen, benötigt werden auch tatsächlich aktiv sind. Die übrigen Reaktionen werden als inaktiv betrachtet. Die Kontextspezifität des Metabolismus kann durch verschiedene experimentelle Daten, wie Gen- und Proteinexpressionen oder Metabolitprofile erfasst werden. Zusätzlich können diese Daten in Computersimulationen des Metabolismus integriert werden, um kontextspezifische (metabolische) Vorhersagen zu treffen. Diese Doktorarbeit besteht aus drei unabhängigen Studien, welche die Integration von kontextspezifischen experimentellen Daten in Computersimulationen des Metabolismus thematisieren. Die erste Studie beschreibt ein Konzept, basierend auf einem mathematischen Optimierungsproblem, welches es erlaubt kontextspezifische, metabolische Vorhersagen zu treffen. Dabei bietet diese vollautomatische Methode den Vorteil vom Nutzer unabhängige Parameter, zu verwenden. Die zweite Studie untersucht den Einfluss von alternativen optimalen Lösungen, welche bei kontextspezifischen metabolischen Vorhersagen generiert werden. Diese alternativen Lösungen stellen metabolische Modellvorhersagen da, welche die integrierten Daten gleichgut wiederspiegeln, sich aber grundlegend voneinander unterscheiden können. Diese Studie zeigt verschiedene Ansätze alternativen Lösungen zu analysieren und ihren Einfluss auf die Vorhersagen zu berücksichtigen. Schlussendlich, untersucht die dritte Studie die metabolische Spezialisierung der Schließzellen in Arabidopsis thaliana und vergleicht diese mit einer weiteren Zellart, den Mesophyllzellen. Zu diesem Zweck wurden die in dieser Doktorarbeit vorgestellten Methoden angewandt um metabolische Vorhersagen speziell für Schließzellen und Mesophyllzellen zu erhalten. Anschließend wurden die zellspezifischen Vorhersagen auf Unterschiede in der metabolischen Aktivität der Zelltypen, unter Berücksichtigung des Effekt von alternativen Optima, untersucht. Die Ergebnisse der Simulationen legen eine grundlegende Neuorganisation des Primärmetabolismus in Schließzellen verglichen mit Mesophyllzellen nahe. Diese Ergebnisse werden durch unabhängige 13C markierungs Experimente bestätigt. KW - systems biology KW - bioinformatics KW - metabolic networks KW - constraint-based modeling KW - data integration KW - Systemsbiologie KW - Bioinformatik KW - Stoffwechselnetze KW - Constraint-basierte Modellierung KW - Datenintegration Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401365 ER - TY - JOUR A1 - Küken, Anika A1 - Gennermann, Kristin A1 - Nikoloski, Zoran T1 - Characterization of maximal enzyme catalytic rates in central metabolism of Arabidopsis thaliana JF - The plant journal N2 - Availability of plant-specific enzyme kinetic data is scarce, limiting the predictive power of metabolic models and precluding identification of genetic factors of enzyme properties. Enzyme kinetic data are measuredin vitro, often under non-physiological conditions, and conclusions elicited from modeling warrant caution. Here we estimate maximalin vivocatalytic rates for 168 plant enzymes, including photosystems I and II, cytochrome-b6f complex, ATP-citrate synthase, sucrose-phosphate synthase as well as enzymes from amino acid synthesis with previously undocumented enzyme kinetic data in BRENDA. The estimations are obtained by integrating condition-specific quantitative proteomics data, maximal rates of selected enzymes, growth measurements fromArabidopsis thalianarosette with and fluxes through canonical pathways in a constraint-based model of leaf metabolism. In comparison to findings inEscherichia coli, we demonstrate weaker concordance between the plant-specificin vitroandin vivoenzyme catalytic rates due to a low degree of enzyme saturation. This is supported by the finding that concentrations of nicotinamide adenine dinucleotide (phosphate), adenosine triphosphate and uridine triphosphate, calculated based on our maximalin vivocatalytic rates, and available quantitative metabolomics data are below reportedKMvalues and, therefore, indicate undersaturation of respective enzymes. Our findings show that genome-wide profiling of enzyme kinetic properties is feasible in plants, paving the way for understanding resource allocation. KW - Arabidopsis thaliana KW - constraint-based modeling KW - enzyme catalytic rates KW - kinetic parameter KW - metabolic network KW - turnover number Y1 - 2020 U6 - https://doi.org/10.1111/tpj.14890 SN - 0960-7412 SN - 1365-313X VL - 103 IS - 6 SP - 2168 EP - 2177 PB - Wiley CY - Oxford ER -