TY - THES A1 - Skirycz, Aleksandra T1 - Functional analysis of selected DOF transcription factors in the model plant Arabidopsis thaliana T1 - Funktionsanalyse ausgewählter DOF-Transkriptionsfaktoren bei der Modellpflanze Arabidopsis thaliana N2 - Transcription factors (TFs) are global regulators of gene expression playing essential roles in almost all biological processes, and are therefore of great scientific and biotechnological interest. This project focused on functional characterisation of three DNA-binding-with-one-zinc-finger (DOF) TFs from the genetic model plant Arabidopsis thaliana, namely OBP1, OBP2 and AtDOF4;2. These genes were selected due to severe growth phenotypes conferred upon their constitutive over-expression. To identify biological processes regulated by OBP1, OBP2 and AtDOF4;2 in detail molecular and physiological characterization of transgenic plants with modified levels of OBP1, OBP2 and AtDOF4;2 expression (constitutive and inducible over-expression, RNAi) was performed using both targeted and profiling technologies. Additionally expression patterns of studied TFs and their target genes were analyzed using promoter-GUS lines and publicly available microarray data. Finally selected target genes were confirmed by chromatin immuno-precipitation and electrophoretic-mobility shift assays. This combinatorial approach revealed distinct biological functions of OBP1, OBP2 and AtDOF4;2. Specifically OBP2 controls indole glucosinolate / auxin homeostasis by directly regulating the enzyme at the branch of these pathways; CYP83B1 (Skirycz et al., 2006). Glucosinolates are secondary compounds important for defence against herbivores and pathogens in the plants order Caparales (e.g. Arabidopsis, canola and broccoli) whilst auxin is an essential plant hormone. Hence OBP2 is important for both response to biotic stress and plant growth. Similarly to OBP2 also AtDOF4;2 is involved in the regulation of plant secondary metabolism and affects production of various phenylpropanoid compounds in a tissue and environmental specific manner. It was found that under certain stress conditions AtDOF4;2 negatively regulates flavonoid biosynthetic genes whilst in certain tissues it activates hydroxycinnamic acid production. It was hypothesized that this dual function is most likely related to specific interactions with other proteins; perhaps other TFs (Skirycz et al., 2007). Finally OBP1 regulates both cell proliferation and cell expansion. It was shown that OBP1 controls cell cycle activity by directly targeting the expression of core cell cycle genes (CYCD3;3 and KRP7), other TFs and components of the replication machinery. Evidence for OBP1 mediated activation of cell cycle during embryogenesis and germination will be presented. Additionally and independently on its effects on cell proliferation OBP1 negatively affects cell expansion via reduced expression of cell wall loosening enzymes. Summing up this work provides an important input into our knowledge on DOF TFs function. Future work will concentrate on establishing exact regulatory networks of OBP1, OBP2 and AtDOF4;2 and their possible biotechnological applications. N2 - Biologische Prozesse, wie beispielsweise das Wachstum von Organen und ganzen Organismen oder die Reaktion von Lebewesen auf ungünstige Umweltbedingungen, unterliegen zahlreichen Regulationsmechanismen. Besonders wichtige Regulatoren sind die sogenannten Transkriptionsfaktoren. Dabei handelt es sich um Proteine, die die Aktivität von Erbeinheiten, den Genen, beeinflussen. In Pflanzen gibt es etwa 2000 solcher Regulatoren. Da sie wichtige Kontrollelemente darstellen, sind sie von großem wissenschaftlichen und biotechnologischen Interesse. Im Rahmen der Doktorarbeit sollte die Funktion von drei Transkriptionsfaktoren, genannt OBP1, OBP2 und AtDOF4;2, untersucht werden. Sie wurden bei der Suche nach neuen Wachstumsregulatoren identifiziert. Als Untersuchungsobjekt diente die in der Öffentlichkeit kaum bekannte Pflanze Ackerschmalwand, lateinisch als Arabidopsis thaliana bezeichnet. Um die Funktion der Regulatoren zu entschlüsseln, wurden an der Modellpflanze genetische Veränderungen durchgeführt und die Pflanzen dann mit molekularbiologischen und physiologischen Methoden analysiert. Es zeigte sich, dass OBP1 an der Regulation der Zellteilung beteiligt ist. Alle Lebewesen sind aus Zellen aufgebaut. Gelingt es, die Zellteilung gezielt zu steuern, kann damit beispielsweise die Produktion von pflanzlicher Biomasse verbessert werden. Das OBP1-Protein übt auch einen Einfluss auf die Zellstreckung aus und beeinflusst auch auf diesem Wege das pflanzliche Wachstum. Die beiden anderen Proteine steuern Prozesse, die im Zusammenhang mit der Bildung von Pflanzeninhaltsstoffen stehen. OBP2 ist Teil eines zellulären Netzwerkes, dass die Synthese von sogenannten Glucosinolaten steuert. Glucosinolate kommen unter anderem in Broccoli und Kohl vor. Sie fungieren als Abwehrstoffe gegen Fraßinsekten. Einigen Glucosinolaten wird auch gesundheitsfördernde Wirkung zugesprochen. Das Protein AtDOF4;2 ist Komponente eines anderen Netzwerkes, dass die Bildung von Phenylpropanoiden steuert. Diese Substanzen haben strukturelle Funktion und spielen darüber hinaus eine Rolle bei der pflanzlichen Toleranz gegenüber tiefen Temperaturen. Mit der Doktorarbeit konnte das Wissen über die Transkriptionsfaktoren erheblich erweitert und die Grundlage für interessante zukünftige Arbeiten gelegt werden. Von großer Bedeutung wird es dabei sein, die Netzwerke, in die die Transkriptionsfaktoren eingebunden sind, noch besser zu verstehen. Dann wird es möglich sein, auch Teilnetzwerke gezielt zu beeinflussen, was für biotechnologische Anwendungen, beispielsweise bei der Präzisionszüchtung von nachwachsenden Rohstoffen, von zentraler Bedeutung ist. KW - Transkriptionsfaktoren KW - Arabidopsis thaliana KW - transcription factors KW - Arabidopsis thaliana KW - cell cycle KW - secondary metabolism Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-16987 ER - TY - GEN A1 - Sharma, Niharika A1 - Dang, Trang Minh A1 - Singh, Namrata A1 - Ruzicic, Slobodan A1 - Müller-Röber, Bernd A1 - Baumann, Ute A1 - Heuer, Sigrid T1 - Allelic variants of OsSUB1A cause differential expression of transcription factor genes in response to submergence in rice T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background: Flooding during seasonal monsoons affects millions of hectares of rice-cultivated areas across Asia. Submerged rice plants die within a week due to lack of oxygen, light and excessive elongation growth to escape the water. Submergence tolerance was first reported in an aus-type rice landrace, FR13A, and the ethylene-responsive transcription factor (TF) gene SUB1A-1 was identified as the major tolerance gene. Intolerant rice varieties generally lack the SUB1A gene but some intermediate tolerant varieties, such as IR64, carry the allelic variant SUB1A-2. Differential effects of the two alleles have so far not been addressed. As a first step, we have therefore quantified and compared the expression of nearly 2500 rice TF genes between IR64 and its derived tolerant near isogenic line IR64-Sub1, which carries the SUB1A-1 allele. Gene expression was studied in internodes, where the main difference in expression between the two alleles was previously shown. Results: Nineteen and twenty-six TF genes were identified that responded to submergence in IR64 and IR64-Sub1, respectively. Only one gene was found to be submergence-responsive in both, suggesting different regulatory pathways under submergence in the two genotypes. These differentially expressed genes (DEGs) mainly included MYB, NAC, TIFY and Zn-finger TFs, and most genes were downregulated upon submergence. In IR64, but not in IR64-Sub1, SUB1B and SUB1C, which are also present in the Sub1 locus, were identified as submergence responsive. Four TFs were not submergence responsive but exhibited constitutive, genotype-specific differential expression. Most of the identified submergence responsive DEGs are associated with regulatory hormonal pathways, i.e. gibberellins (GA), abscisic acid (ABA), and jasmonic acid (JA), apart from ethylene. An in-silico promoter analysis of the two genotypes revealed the presence of allele-specific single nucleotide polymorphisms, giving rise to ABRE, DRE/CRT, CARE and Site II cis-elements, which can partly explain the observed differential TF gene expression. Conclusion: This study identified new gene targets with the potential to further enhance submergence tolerance in rice and provides insights into novel aspects of SUB1A-mediated tolerance. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 619 KW - submergence tolerance KW - SUB1A KW - rice KW - transcription factors Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423508 SN - 1866-8372 IS - 619 ER - TY - THES A1 - Oberkofler, Vicky T1 - Molecular basis of HS memory in Arabidopsis thaliana T1 - Die molekulare Basis des Hitzestress-Gedächtnisses in Arabidopsis thaliana N2 - Plants can be primed to survive the exposure to a severe heat stress (HS) by prior exposure to a mild HS. The information about the priming stimulus is maintained by the plant for several days. This maintenance of acquired thermotolerance, or HS memory, is genetically separable from the acquisition of thermotolerance itself and several specific regulatory factors have been identified in recent years. On the molecular level, HS memory correlates with two types of transcriptional memory, type I and type II, that characterize a partially overlapping subset of HS-inducible genes. Type I transcriptional memory or sustained induction refers to the sustained transcriptional induction above non-stressed expression levels of a gene for a prolonged time period after the end of the stress exposure. Type II transcriptional memory refers to an altered transcriptional response of a gene after repeated exposure to a stress of similar duration and intensity. In particular, enhanced re-induction refers to a transcriptional pattern in which a gene is induced to a significantly higher degree after the second stress exposure than after the first. This thesis describes the functional characterization of a novel positive transcriptional regulator of type I transcriptional memory, the heat shock transcription factor HSFA3, and compares it to HSFA2, a known positive regulator of type I and type II transcriptional memory. It investigates type I transcriptional memory and its dependence on HSFA2 and HSFA3 for the first time on a genome-wide level, and gives insight on the formation of heteromeric HSF complexes in response to HS. This thesis confirms the tight correlation between transcriptional memory and H3K4 hyper-methylation, reported here in a case study that aimed to reduce H3K4 hyper-methylation of the type II transcriptional memory gene APX2 by CRISPR/dCas9-mediated epigenome editing. Finally, this thesis gives insight into the requirements for a heat shock transcription factor to function as a positive regulator of transcriptional memory, both in terms of its expression profile and protein abundance after HS and the contribution of individual functional domains. In summary, this thesis contributes to a more detailed understanding of the molecular processes underlying transcriptional memory and therefore HS memory, in Arabidopsis thaliana. N2 - Pflanzen können darauf vorbereitet werden, einen schweren Hitzestress (HS) zu überleben, indem sie zuvor einem leichten HS ausgesetzt werden. Die Information über den Priming-Stimulus wird von der Pflanze mehrere Tage lang aufrechterhalten. Diese Aufrechterhaltung der erworbenen Thermotoleranz, das so genannte HS-Gedächtnis, ist genetisch vom Erwerb der Thermotoleranz selbst trennbar, und in den letzten Jahren wurden mehrere spezifische Regulierungsfaktoren identifiziert. Auf molekularer Ebene korreliert das HS-Gedächtnis mit zwei Arten von Transkriptionsgedächtnis, Typ I und Typ II, die eine sich teilweise überschneidende Untergruppe von HS-induzierbaren Genen charakterisieren. Das Transkriptionsgedächtnis vom Typ I oder die anhaltende Induktion bezieht sich auf die anhaltende Transkriptionsinduktion eines Gens über das Niveau der Expression im ungestressten Zustand hinaus über einen längeren Zeitraum nach dem Ende der Stressbelastung. Das Transkriptionsgedächtnis des Typs II bezieht sich auf eine veränderte Transkriptionsreaktion eines Gens nach wiederholter Exposition gegenüber einem Hitzestress von ähnlicher Dauer und Intensität. Insbesondere bezieht sich dabei die verstärkte Re-Induktion auf ein Transkriptionsmuster, bei dem ein Gen nach der zweiten Stressexposition in deutlich höherem Maße induziert wird als nach der ersten. Diese Arbeit beschreibt die funktionelle Charakterisierung eines neuartigen positiven Transkriptionsregulators des Typ-I-Transkriptionsgedächtnisses, des Hitzeschock-Transkriptionsfaktors HSFA3, und vergleicht ihn mit HSFA2, einem bekannten positiven Regulator des Typ-I- und Typ-II-Transkriptionsgedächtnisses. Die Arbeit untersucht das Typ-I-Transkriptionsgedächtnis und seine Abhängigkeit von HSFA2 und HSFA3 zum ersten Mal auf genomweiter Ebene und gibt Einblick in die Bildung heteromerer HSF-Komplexe als Reaktion auf HS. Diese Arbeit bestätigt den engen Zusammenhang zwischen transkriptionellem Gedächtnis und H3K4-Hypermethylierung, über den hier in einer Fallstudie berichtet wird, die darauf abzielt, die H3K4-Hypermethylierung des Typ-II-Transkriptionsgedächtnisgens APX2 durch CRISPR/dCas9-vermitteltes Epigenom-Editing zu reduzieren. Schließlich gibt diese Arbeit einen Einblick in die Anforderungen, die ein Hitzeschock-Transkriptionsfaktor erfüllen muss, damit er als positiver Regulator des Transkriptionsgedächtnisses fungieren kann, und zwar sowohl in Bezug auf sein Expressionsprofil und seine Proteinabundanz nach HS als auch in Bezug auf den Beitrag seiner einzelnen funktionellen Domänen. Zusammenfassend trägt diese Arbeit zu einem genaueren Verständnis der molekularen Prozesse bei, die dem Transkriptionsgedächtnis und damit dem HS-Gedächtnis in Arabidopsis thaliana zugrunde liegen. KW - Arabidopsis thaliana KW - abiotic stress KW - heat stress memory KW - transcription factors KW - HSF KW - epigenome editing KW - histone methylation KW - H3K4me KW - Arabidopsis thaliana KW - H3K4me KW - Hitzeschock-Transkriptionsfaktor KW - abiotischer Stress KW - Epigenom Editierung KW - Hitzestress-Gedächtnis KW - Histon Methylierung KW - Transkriptionsfaktoren Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-569544 ER - TY - THES A1 - Guedes Corrêa, Luiz Gustavo T1 - Evolutionary and functional analysis of transcription factors controlling leaf development T1 - Evolutionäre und funktionelle Analyse von Transkriptionsfaktoren, welche die Blattentwicklung steuern N2 - Leaves are the main photosynthetic organs of vascular plants, and leaf development is dependent on a proper control of gene expression. Transcription factors (TFs) are global regulators of gene expression that play essential roles in almost all biological processes among eukaryotes. This PhD project focused on the characterization of the sink-to-source transition of Arabidopsis leaves and on the analysis of TFs that play a role in early leaf development. The sink-to-source transition occurs when the young emerging leaves (net carbon importers) acquire a positive photosynthetic balance and start exporting photoassimilates. We have established molecular and physiological markers (i.e., CAB1 and CAB2 expression levels, AtSUC2 and AtCHoR expression patterns, chlorophyll and starch levels, and photosynthetic electron transport rates) to identify the starting point of the transition, especially because the sink-to-source is not accompanied by a visual phenotype in contrast to other developmental transitions, such as the mature-to-senescent transition of leaves. The sink-to-source transition can be divided into two different processes: one light dependent, related to photosynthesis and light responses; and one light independent or impaired, related to the changes in the vascular tissue that occur when leaves change from an import to an export mode. Furthermore, starch, but not sucrose, has been identified as one of the potential signalling molecules for this transition. The expression level of 1880 TFs during early leaf development was assessed by qRTPCR, and 153 TFs were found to exhibit differential expression levels of at least 5-fold. GRF, MYB and SRS are TF families, which are overrepresented among the differentially expressed TFs. Additionally, processes like cell identity acquisition, formation of the epidermis and leaf development are overrepresented among the differentially expressed TFs, which helps to validate the results obtained. Two of these TFs were further characterized. bZIP21 is a gene up-regulated during the sink-to-source and mature-to-senescent transitions. Its expression pattern in leaves overlaps with the one observed for AtCHoR, therefore it constitutes a good marker for the sink-to-source transition. Homozygous null mutants of bZIP21 could not be obtained, indicating that the total absence of bZIP21 function may be lethal to the plant. Phylogenetic analyses indicate that bZIP21 is an orthologue of Liguleless2 from maize. In these analyses, we identified that the whole set of bZIPs in plants originated from four founder genes, and that all bZIPs from angiosperms can be classified into 13 groups of homologues and 34 Possible Groups of Orthologues (PoGOs). bHLH64 is a gene highly expressed in early sink leaves, its expression is downregulated during the mature-to-senescent transition. Null mutants of bHLH64 are characterized by delayed bolting when compared to the wild-type; this indicates a possible delay in the sink-to-source transition or the retention of a juvenile identity. A third TF, Dof4, was also characterized. Dof4 is neither differentially expressed during the sink-to-source nor during the senescent-to-mature transition, but a null mutant of Dof4 develops bigger leaves than the wild-type and forms a greater number of siliques. The Dof4 null mutant has proven to be a good background for biomass accumulation analysis. Though not overrepresented during the sink-to-source transition, NAC transcription factors seem to contribute significantly to the mature-to-senescent transition. Twenty two NACs from Arabidopsis and 44 from rice are differentially expressed during late stages of leaf development. Phylogenetic analyses revealed that most of these NACs cluster into three big groups of homologues, indicating functional conservation between eudicots and monocots. To prove functional conservation of orthologues, the expression of ten NAC genes of barley was analysed. Eight of the ten NAC genes were found to be differentially expressed during senescence. The use of evolutionary approaches combined with functional studies is thus expected to support the transfer of current knowledge of gene control gained in model species to crops. N2 - Das Blatt ist das wichtigste photosynthetische Organ von Gefäßpflanzen und die Blattentwicklung ist von einer exakten Genexpression abhängig. Transkriptionsfaktoren (TFs) sind globale Regulatoren der Genexpression. Diese sind, in fast allen biologischen Vorgängen der Eukaryoten, von grundlegender Bedeutung. Das Promotionsarbeit legte den Schwerpunkt auf den sogenannten Sink-source-Übergang in Blättern der Modellpflanze Arabidopsis thaliana, zu deutsch Ackerschmalwand. Ein besonderer Fokus lag dabei auf der Analyse von TFs, welche eine wichtige Rolle in der frühen Blattentwicklung spielen. Sehr junge Blätter befinden sich im sogenannten Sink-Status, sie müssen Photoassimilate aus älteren, sogenannten Source-Blättern importieren, da sie selbst noch nicht in der Lage sind, hinreichend viel Kohlendioxid über die Photosynthese zu binden. Der Übergang vom Sink- in den Source-Zustand eines Blattes ist ein hoch komplizierter biologischer Prozess, der bisher nur in Ansätzen verstanden ist. Im Rahmen der Doktorarbeit wurden molekulare und physiologische Marker identifiziert, die es erlauben, den für das bloße Auge nicht ohne weiteres sichtbaren Sink-Source-Übergang zu erkennen. Dazu wurde beispielsweise die Aktivität bestimmter Gene, unter anderem der Gene AtSUC2 und AtCHoR, mittels molekularer Techniken verfolgt. Um den Über zwischen den beiden Entwicklungszuständen eingehend zu charakterisieren wurde die Aktivität von etwa 1900 Regulatorgenen mittels eines multiparallelen Verfahrens - der sogenannten quantitativen RT-PCR - untersucht. Bei den Regulatoren handelt es sich um Transkriptionsfaktoren, die die Aktivität anderer Gene der Pflanzen steuern. Von allen untersuchten Genen zeigten 153 ein vom Blattstadium abhängiges Aktivitätsmuster. Dabei waren Mitglieder der GRF, MYB und SRS Familien überrepräsentiert. Für die gefundenen Transkriptionsfaktoren zeigte sich besonders häufig eine Assoziation zu Prozessen wie Spezialisierung von Zellen, Entwicklung der Epidermis sowie der Blattentwicklung. Zwei ausgewählte Regulatorproteine - bZIP21 und bHLH64 - wurden detaillierter charakterisiert. Das bZIP21-Gen zeigte eine starke Aktivität whrend des Sink-Source-Übergangs. Sein Expressionsmuster in Blättern deckt sich mit dem für AtCHoR beobachteten Expressionsmuster, so dass bZIP21 als ein neuer Marker für die Sink-Source- Transition dienen kann. Es konnten keine homozygoten Null-Mutanten des Gens erhalten werden, was die Vermutung nahelegt, dass gänzliche Abwesenheit von bZIP21 letal fr die Pflanze sein kann. Phylogenetische Analysen ergaben, dass bZIP21 ortholog zum Gen Liguleless2 aus Mais ist. In diesen Analysen konnte gezeigt werden, dass alle pflanzlichen bZIP Transkriptionsfaktoren von vier Gründergenen abstammen und alle bZIPs der Angiospermen in 13 homologe Klassen und 34 mögliche orthologe Klassen (Possible Groups of Orthologues, PoGOs) eingeordnet werden können. Das bHLH64 Gen ist im unreifen Blatt stark aktiv und während des Alterungsprozesses herunterreguliert. Null-Mutationen von bHLH64 zeigen eine verzögerte Blütenbildung im Vergleich zum Wildtyp; dies weist auf eine mögliche Verzögerung in des Sink-SourceÜbergangs oder Aufrechterhaltung der jugendlichen Identität hin. Ein dritter Transkriptionsfaktor, Dof4, wurde ebenfalls charakterisiert. Dof4 wird weder während des Sink-Source-Übergangs noch während des Alterungsprozesses unterschiedlich exprimiert. Eine Null-Mutante von Dof4 besaß größere Blätter und eine höhere Anzahl an Schoten in Vergleich zum Wildtyp. Diese Mutanten erwiesen sich als gut geeignet fr die Analyse der Akkumulation pflanzlicher Biomasse. Obwohl während der Sink-Source Transition nicht überrepräsentiert, scheinen NAC Transkriptionsfaktoren eine große Rolle während des Alterungsprozesses zu spielen. Zweiundzwanzig NAC-Gene von Arabidopsis und 44 von Reis sind in der späten Phase der Blattentwicklung verändert exprimiert. Phylogenetische Analysen erlaubten die Einordnung der meisten dieser NACs in vier homologe Gruppen, was auf einen funktionellen Erhalt zwischen einkeimblättrigen und zweikeimblättrigen Pflanzen hinweist. Um den funktionellen Erhalt von Orthologen zu untersuchen, wurde die Expression von zehn NAC-Genen aus Gerste analysiert. Acht dieser Gene zeigten eine von der Blattalterung abhängige Expression. Die Kombination von evolutionären Analysen und funktionellen Studien könnte den Wissenstransfer von Modellpflanzen auf Getreidepflanzen in Zukunft vereinfachen. KW - Evolution KW - Transkriptionsfaktoren KW - Pflanzen KW - Entwicklung KW - Blatt KW - evolution KW - transcription factors KW - plant KW - development KW - leaf Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-40038 ER - TY - GEN A1 - Durgud, Meriem A1 - Gupta, Saurabh A1 - Ivanov, Ivan A1 - Omidbakhshfard, Mohammad Amin A1 - Benina, Maria A1 - Alseekh, Saleh A1 - Staykov, Nikola A1 - Hauenstein, Mareike A1 - Dijkwel, Paul P. A1 - Hortensteiner, Stefan A1 - Toneva, Valentina A1 - Brotman, Yariv A1 - Fernie, Alisdair R. A1 - Müller-Röber, Bernd A1 - Gechev, Tsanko S. T1 - Molecular mechanisms preventing senescence in response to prolonged darkness in a desiccation-tolerant plant T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The desiccation-tolerant plant Haberlea rhodopensis can withstand months of darkness without any visible senescence. Here, we investigated the molecular mechanisms of this adaptation to prolonged (30 d) darkness and subsequent return to light. H. rhodopensis plants remained green and viable throughout the dark treatment. Transcriptomic analysis revealed that darkness regulated several transcription factor (TF) genes. Stress-and autophagy-related TFs such as ERF8, HSFA2b, RD26, TGA1, and WRKY33 were up-regulated, while chloroplast-and flowering-related TFs such as ATH1, COL2, COL4, RL1, and PTAC7 were repressed. PHYTOCHROME INTERACTING FACTOR4, a negative regulator of photomorphogenesis and promoter of senescence, also was down-regulated. In response to darkness, most of the photosynthesis-and photorespiratory-related genes were strongly down-regulated, while genes related to autophagy were up-regulated. This occurred concomitant with the induction of SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASES (SnRK1) signaling pathway genes, which regulate responses to stress-induced starvation and autophagy. Most of the genes associated with chlorophyll catabolism, which are induced by darkness in dark-senescing species, were either unregulated (PHEOPHORBIDE A OXYGENASE, PAO; RED CHLOROPHYLL CATABOLITE REDUCTASE, RCCR) or repressed (STAY GREEN-LIKE, PHEOPHYTINASE, and NON-YELLOW COLORING1). Metabolite profiling revealed increases in the levels of many amino acids in darkness, suggesting increased protein degradation. In darkness, levels of the chloroplastic lipids digalactosyldiacylglycerol, monogalactosyldiacylglycerol, phosphatidylglycerol, and sulfoquinovosyldiacylglycerol decreased, while those of storage triacylglycerols increased, suggesting degradation of chloroplast membrane lipids and their conversion to triacylglycerols for use as energy and carbon sources. Collectively, these data show a coordinated response to darkness, including repression of photosynthetic, photorespiratory, flowering, and chlorophyll catabolic genes, induction of autophagy and SnRK1 pathways, and metabolic reconfigurations that enable survival under prolonged darkness. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 778 KW - beta-oxidation KW - craterostigma-plantagineum KW - photosynthetic apparatus KW - transcription factors KW - lipid-metabolism KW - leaf senescence KW - fatty-acid KW - arabidopsis KW - chlorophyll KW - stress Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-437588 IS - 778 SP - 1319 EP - 1338 ER - TY - THES A1 - Bielecka, Monika T1 - Analysis of transcription factors under sulphur deficiency stress T1 - Analyse von Transkriptionsfaktoren unter Schwefelstress N2 - Sulphur, a macronutrient essential for plant growth, is among the most versatile elements in living organisms. Unfortunately, little is known about regulation of sulphate uptake and assimilation by plants. Identification of sulphate signalling processes will allow to control sulphate acquisition and assimilation and may prove useful in the future to improve sulphur-use efficiency in agriculture. Many of genes involved in sulphate metabolism are regulated on transcriptional level by products of other genes called transcription factors (TF). Several published experiments revealed TF genes that respond to sulphate deprivation, but none of these have been so far been characterized functionally. Thus, we aimed at identifying and characterising transcription factors that control sulphate metabolism in the model plant Arabidopsis thaliana. To achieve that goal we postulated that factors regulating Arabidopsis responses to inorganic sulphate deficiency change their transcriptional levels under sulphur-limited conditions. By comparing TF transcript profiles from plants grown on different sulphate regimes, we identified TF genes that may specifically induce or repress changes in expression of genes that allow plants to adapt to changes in sulphate availability. Candidate genes obtained from this screening were tested by reverse genetics approaches. Transgenic plants constitutively overproducing selected TF genes and mutant plants, lacking functional selected TF genes (knock out), were used. By comparing metabolite and transcript profiles from transgenic and wild type plants we aimed at confirming the role of selected AP2 TF candidate genes in plant adaptation to sulphur unavailability. After preliminary characterisation of WRKY24 and MYB93 TF genes, we postulate that these factors are involved in a complex multifactorial regulatory network, in which WRKY24 and MYB93 would act as superior factors regulating other transcription factors directly involved in the regulation of S-metabolism genes. Results obtained for plants overproducing TOE1 and TOE2 TF genes suggests that these factors may be involved in a mechanism, which is promoting synthesis of an essential amino acid, methionine, over synthesis of another amino acid, cysteine. Thus, TOE1 and TOE2 genes might be a part of transcriptional regulation of methionine synthesis. Approaches creating genetically manipulated plants may produce plant phenotypes of immediate biotechnological interest, such as plants with increased sulphate or sulphate-containing amino acid content, or better adapted to the sulphate unavailability. N2 - Der fuer das Pflanzenwachstum essentielle Makro-Naehrstoff Schwefel gehoert zu den vielseitigsten Elementen in lebenden Organismen. Ungluecklicherweise ist nur wenig ueber die Regulation der Schwefel Aufnahme und Assimilation von Pflanzen bekannt. Die Identifizierung von Schwefel Signalweiterleitungsprozessen wird es erlauben, die Aufnahme und Assimilation von Schwefel zu kontrollieren und koennte sich in der Zukunft als nuetzlich erweisen, die Effizienz der Schwefel Nutzung in der Landwirtschaft zu verbessern. Viele Gene, die am Schwefel Metabolismus beteiligt sind, werden auf Transkriptionsebene durch die Produkte anderer Gene, sogenannter Transkriptionsfaktoren (TF), reguliert. Mehrere veroeffentlichte Versuche beschreiben TF Gene, die auf Schwefel Mangel reagieren, es wurde jedoch bisher keines dieser Gene funktionell charakterisiert. Daher war es unser Ziel die TF, die den Schwefel Metabolismus in der Modellpflanze Arabidopsis thaliana kontrollieren, zu identifizieren und charakterisieren. Um dies zu erreichen postulierten wir, dass die Faktoren, die die Reaktion von Arabidopsis auf den Mangel an anorganischem Schwefel regulieren, das Mass ihrer Transkription unter Schwefelmangel aendern. Durch den Vergleich von TF Transkriptionsprofilen von Pflanzen, die unter verschiedenen Schwefelbedingungen aufgezogen wurden, identifizierten wir TF Gene, die moeglicherweise spezifisch Aenderungen in der Expression von Genen, die den Pflanzen erlauben sich an Aenderungen der Schwefel Verfuegbarkeit anzupassen, induzieren oder reprimieren. Die bei dieser Untersuchung erhaltenen Kandidaten Gene wurden in einen „reverse genetics“ Ansatz getestet. Es wurden transgene Pflanzen, die ausgewaehlte TF Gene konstitutiv ueberproduzieren, und Mutanten, denen ausgewaehlte funktionierende TF Gene fehlen („knock out“), benutzt. Durch den Vergleich von Metabolisten und Transkript Profilen transgener und wildtyp Pflanzen zielten wir auf die Bestaetigung der Rolle ausgewaehlter AP2 TF Kandidaten Gene bei der Anpassung an Schwefel Unverfuegbarkeit ab. Nach vorlaeufiger Charakterisierung von WRKY24 und MYB93 TF Genen postulieren wir, dass diese Faktoren an einem komplexen multifaktoriellen Regulationsnetzwerk beteiligt sind, in dem WRKY24 und MYB93 als uebergeordnete Faktoren agieren und andere TF regulieren, die direkt an der Regulation von Schwefel Metabolismus Genen beteiligt sind. Ergebnisse von Untersuchungen an Pflanzen, die TOE1 und TOE2 TF Gene ueberproduzieren deuten darauf hin, dass diese Faktoren an einem Mechanismus beteiligt sein koennten, der die Synthese einer essentiellen Aminosaeure, Methionin, zu Ungunsten der Synthese einer anderen Aminosaeure, Cystein, foerdert. Daher koennten TOE1 und TOE2 Gene Teil der transkriptionellen Regulation der Methionin Synthese sein. Die Herstellung genetisch manipulierter Pflanzen koennte Pflanzenphaenotypen erzeugen, die von sofortigem biotechnologischen Interesse sind, beispielsweise Pflanzen mit erhoehtem Gehalt an Schwefel oder schwefelhaltigen Aminosaeuren, oder Pflanzen, die besser an Schwefel Unverfuegbarkeit angepasst sind. KW - Schwefel KW - Transkriptionsfaktoren KW - Arabidopsis thaliana KW - sulphur KW - transcription factors KW - Arabidopsis thaliana Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-14812 ER -