TY - JOUR A1 - Bozzo, Enrico A1 - Ferrigno, Carlo A1 - Oskinova, Lida A1 - Ducci, Lorenzo T1 - Accretion of a clumped wind from a red supergiant donor on to a magnetar is suggested by the analysis of the XMM-Newton and NuSTAR observations of the X-ray binary 3A 1954+319 JF - Monthly notices of the Royal Astronomical Society N2 - 3A 1954+319 has been classified for a long time as a symbiotic X-ray binary, hosting a slowly rotating neutron star and an aged M red giant. Recently, this classification has been revised thanks to the discovery that the donor star is an M supergiant. This makes 3A 1954+319 a rare type of high-mass X-ray binary consisting of a neutron star and a red supergiant donor. In this paper, we analyse two archival and still unpublished XMM-Newton and NuSTAR observations of the source. We perform a detailed hardness ratio-resolved spectral analysis to search for spectral variability that could help investigating the structures of the inhomogeneous M supergiant wind from which the neutron star is accreting. We discuss our results in the context of wind-fed supergiant X-ray binaries and show that the newest findings on 3A 1954+319 reinforce the hypothesis that the neutron star in this system is endowed with a magnetar-like magnetic field strength (greater than or similar to 10(14) G). KW - accretion KW - stars: massive KW - stars: neutron KW - X-rays: binaries KW - X-rays: individual: 3A 1954+319 KW - X-rays: stars KW - accretion discs Y1 - 2021 U6 - https://doi.org/10.1093/mnras/stab3688 SN - 0035-8711 SN - 1365-2966 VL - 510 IS - 3 SP - 4645 EP - 4653 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Bozzo, Enrico A1 - Romano, Patrizia A1 - Ferrigno, Carlo A1 - Oskinova, Lida T1 - The symbiotic X-ray binaries Sct X-1, 4U 1700+24, and IGR J17329-2731 JF - Monthly notices of the Royal Astronomical Society N2 - Symbiotic X-ray binaries are systems hosting a neutron star accreting form the wind of a late-type companion. These are rare objects and so far only a handful of them are known. One of the most puzzling aspects of the symbiotic X-ray binaries is the possibility that they contain strongly magnetized neutron stars. These are expected to be evolutionary much younger compared to their evolved companions and could thus be formed through the (yet poorly known) accretion induced collapse of a white dwarf. In this paper, we perform a broad-band X-ray and soft gamma-ray spectroscopy of two known symbiotic binaries, Sct X-1 and 4U 1700+24, looking for the presence of cyclotron scattering features that could confirm the presence of strongly magnetized NSs. We exploited available Chandra, Swift, and NuSTAR data. We find no evidence of cyclotron resonant scattering features (CRSFs) in the case of Sct X-1 but in the case of 4U 1700+24 we suggest the presence of a possible CRSF at similar to 16 keV and its first harmonic at similar to 31 keV, although we could not exclude alternative spectral models for the broad-band fit. If confirmed by future observations, 4U 1700+24 could be the second symbiotic X-ray binary with a highly magnetized accretor. We also report about our long-term monitoring of the last discovered symbiotic X-ray binary IGR J17329-2731 performed with Swift/XRT. The monitoring revealed that, as predicted, in 2017 this object became a persistent and variable source, showing X-ray flares lasting for a few days and intriguing obscuration events that are interpreted in the context of clumpy wind accretion. KW - accretion KW - accretion discs KW - stars: massive KW - stars: neutron KW - X-rays: binaries KW - X-rays: individual: SctX-1 KW - X-rays: individual: 4U1700+24; KW - X-rays: stars KW - X-rays: individual: IGRJ17329-2731 Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac907 SN - 0035-8711 SN - 1365-2966 VL - 513 IS - 1 SP - 42 EP - 54 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Postnov, K. A1 - Oskinova, Lida A1 - Torrejon, J. M. T1 - A propelling neutron star in the enigmatic Be-star gamma Cassiopeia JF - Monthly notices of the Royal Astronomical Society N2 - gamma Cassiopeia (gamma Cas), is known to be a binary system consisting of a Be-type star and a low-mass (M similar to 1M(circle dot)) companion of unknown nature orbiting in the Be-disc plane. Here, we apply the quasi-spherical accretion theory on to a compact magnetized star and show that if the low-mass companion of gamma Cas is a fast spinning neutron star, the key observational signatures of. Cas are remarkably well reproduced. Direct accretion on to this fast rotating neutron star is impeded by the propeller mechanism. In this case, around the neutron star magnetosphere a hot shell is formed which emits thermal X-rays in qualitative and quantitative agreement with observed properties of the X-ray emission from gamma Cas. We suggest that gamma Cas and its analogues constitute a new subclass of Be-type X-ray binaries hosting rapidly rotating neutron stars formed in supernova explosions with small kicks. The subsequent evolutionary stage of gamma Cas and its analogues should be the X Per-type binaries comprising low-luminosity slowly rotating X-ray pulsars. The model explains the enigmatic X-ray emission from gamma Cas, and also establishes evolutionary connections between various types of rotating magnetized neutron stars in Be-binaries. KW - stars: emission-line, Be KW - stars: neutron Y1 - 2017 U6 - https://doi.org/10.1093/mnrasl/slw223 SN - 0035-8711 SN - 1365-2966 VL - 465 IS - 1 SP - L119 EP - L123 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - González-Galán, Ana A1 - Oskinova, Lida A1 - Popov, Sergei B. A1 - Haberl, F. A1 - Kühnel, M. A1 - Gallagher, John S. A1 - Schurch, Matthew A1 - Guerrero, M. A. T1 - A multiwavelength study of SXP 1062, the long-period X-ray pulsar associated with a supernova remnant JF - Monthly notices of the Royal Astronomical Society N2 - SXP 1062 is a Be X-ray binary (BeXB) located in the Small Magellanic Cloud. It hosts a long-period X-ray pulsar and is likely associated with the supernova remnant MCSNR J0127−7332. In this work we present a multiwavelength view on SXP 1062 in different luminosity regimes. We consider monitoring campaigns in optical (OGLE survey) and X-ray (Swift telescope). During these campaigns a tight coincidence of X-ray and optical outbursts is observed. We interpret this as typical Type I outbursts as often detected in BeXBs at periastron passage of the neutron star (NS). To study different X-ray luminosity regimes in depth, during the source quiescence we observed it with XMM–Newton while Chandra observations followed an X-ray outburst. Nearly simultaneously with Chandra observations in X-rays, in optical the RSS/SALT telescope obtained spectra of SXP 1062. On the basis of our multiwavelength campaign we propose a simple scenario where the disc of the Be star is observed face-on, while the orbit of the NS is inclined with respect to the disc. According to the model of quasi-spherical settling accretion our estimation of the magnetic field of the pulsar in SXP 1062 does not require an extremely strong magnetic field at the present time. KW - stars: neutron KW - pulsars: individual: SXP 1062 KW - galaxies: individual: Small Magellanic Cloud KW - X-rays: binaries Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx3127 SN - 0035-8711 SN - 1365-2966 VL - 475 IS - 2 SP - 2809 EP - 2821 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - El Mellah, Ileyk A1 - Sander, Andreas Alexander Christoph A1 - Sundqvist, Jon Olof A1 - Keppens, Rony T1 - Formation of wind-captured disks in supergiant X-ray binaries Consequences for Vela X-1 and Cygnus X-1 JF - Astronomy and astrophysics : an international weekly journal N2 - Context. In supergiant X-ray binaries (SgXB), a compact object captures a fraction of the wind of an O/B supergiant on a close orbit. Proxies exist to evaluate the efficiency of mass and angular momentum accretion, but they depend so dramatically on the wind speed that given the current uncertainties, they only set loose constraints. Furthermore, these proxies often bypass the impact of orbital and shock effects on the flow structure. Aims. We study the wind dynamics and angular momentum gained as the flow is accreted. We identify the conditions for the formation of a disk-like structure around the accretor and the observational consequences for SgXB. Methods. We used recent results on the wind launching mechanism to compute 3D streamlines, accounting for the gravitational and X-ray ionizing influence of the compact companion on the wind. Once the flow enters the Roche lobe of the accretor, we solved the hydrodynamics equations with cooling. Results. A shocked region forms around the accretor as the flow is beamed. For wind speeds on the order of the orbital speed, the shock is highly asymmetric compared to the axisymmetric bow shock obtained for a purely planar homogeneous flow. With net radiative cooling, the flow always circularizes for sufficiently low wind speeds. Conclusions. Although the donor star does not fill its Roche lobe, the wind can be significantly beamed and bent by the orbital effects. The net angular momentum of the accreted flow is then sufficient to form a persistent disk-like structure. This mechanism could explain the proposed limited outer extension of the accretion disk in Cygnus X-1 and suggests the presence of a disk at the outer rim of the neutron star magnetosphere in Vela X-1 and has dramatic consequences on the spinning up of the accretor. KW - accretion, accretion disks KW - X-rays: binaries KW - stars: black holes KW - stars: neutron KW - supergiants KW - stars: winds, outflows Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201834498 SN - 1432-0746 VL - 622 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Archer, A. A1 - Benbow, Wystan A1 - Bird, Ralph A1 - Brose, Robert A1 - Buchovecky, M. A1 - Buckley, J. H. A1 - Chromey, A. J. A1 - Cui, Wei A1 - Falcone, A. A1 - Feng, Qi A1 - Finley, J. P. A1 - Fortson, Lucy A1 - Furniss, Amy A1 - Gent, A. A1 - Gueta, O. A1 - Hanna, David A1 - Hassan, T. A1 - Hervet, Olivier A1 - Holder, J. A1 - Hughes, G. A1 - Humensky, T. B. A1 - Johnson, Caitlin A. A1 - Kaaret, Philip A1 - Kar, P. A1 - Kelley-Hoskins, N. A1 - Kertzman, M. A1 - Kieda, David A1 - Krennrich, F. A1 - Kumar, S. A1 - Lang, M. J. A1 - Lin, T. T. Y. A1 - McCann, A. A1 - Moriarty, P. A1 - Mukherjee, Reshmi A1 - Ong, R. A. A1 - Otte, Adam Nepomuk A1 - Pandel, D. A1 - Park, N. A1 - Petrashyk, A. A1 - Pohl, Martin A1 - Pueschel, Elisa A1 - Quinn, J. A1 - Ragan, K. A1 - Richards, Gregory T. A1 - Roache, E. A1 - Sadeh, I A1 - Santander, Marcos A1 - Scott, S. S. A1 - Sembroski, G. H. A1 - Shahinyan, Karlen A1 - Sushch, Iurii A1 - Tyler, J. A1 - Wakely, S. P. A1 - Weinstein, A. A1 - Wells, R. M. A1 - Wilcox, P. A1 - Wilhelm, Alina A1 - Williams, D. A. A1 - Williamson, T. J. A1 - Zitzer, B. T1 - A Search for Pulsed Very High-energy Gamma-Rays from 13 Young Pulsars in Archival VERITAS Data JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We conduct a search for periodic emission in the very high-energy (VHE) gamma-ray band (E > 100 GeV) from a total of 13 pulsars in an archival VERITAS data set with a total exposure of over 450 hr. The set of pulsars includes many of the brightest young gamma-ray pulsars visible in the Northern Hemisphere. The data analysis resulted in nondetections of pulsed VHE gamma-rays from each pulsar. Upper limits on a potential VHE gamma-ray flux are derived at the 95% confidence level above three energy thresholds using two methods. These are the first such searches for pulsed VHE emission from each of the pulsars, and the obtained limits constrain a possible flux component manifesting at VHEs as is seen for the Crab pulsar. KW - gamma rays: general KW - pulsars: general KW - stars: neutron Y1 - 2019 U6 - https://doi.org/10.3847/1538-4357/ab14f4 SN - 0004-637X SN - 1538-4357 VL - 876 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Hosseinzadeh, Griffin A1 - Cowperthwaite, Philip S. A1 - Gomez, Sebastian A1 - Villar, Victoria Ashley A1 - Nicholl, Matt A1 - Margutti, Raffaella A1 - Berger, Edo A1 - Chornock, Ryan A1 - Paterson, Kerry A1 - Fong, Wen-fai A1 - Savchenko, Volodymyr A1 - Short, Phil A1 - Alexander, Kate D. A1 - Blanchard, Peter K. A1 - Braga, Joao A1 - Calkins, Michael L. A1 - Cartier, Regis A1 - Coppejans, Deanne L. A1 - Eftekhari, Tarraneh A1 - Laskar, Tanmoy A1 - Ly, Chun A1 - Patton, Locke A1 - Pelisoli, Ingrid Domingos A1 - Reichart, Daniel E. A1 - Terreran, Giacomo A1 - Williams, Peter K. G. T1 - Follow-up of the Neutron Star Bearing Gravitational-wave Candidate Events S190425z and S190426c with MMT and SOAR JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters N2 - On 2019 April 25.346 and 26.640 UT the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo gravitational-wave (GW) observatory announced the detection of the first candidate events in Observing Run 3 that contained at least one neutron star (NS). S190425z is a likely binary neutron star (BNS) merger at d(L) = 156 +/- 41 Mpc, while S190426c is possibly the first NS-black hole (BH) merger ever detected, at d(L) = 377 +/- 100 Mpc, although with marginal statistical significance. Here we report our optical follow-up observations for both events using the MMT 6.5 m telescope, as well as our spectroscopic follow-up of candidate counterparts (which turned out to be unrelated) with the 4.1 m SOAR telescope. We compare to publicly reported searches, explore the overall areal coverage and depth, and evaluate those in relation to the optical/near-infrared (NIR) kilonova emission from the BNS merger GW170817, to theoretical kilonova models, and to short gamma-ray burst (SGRB) afterglows. We find that for a GW170817-like kilonova, the partial volume covered spans up to about 40% for S190425z and 60% for S190426c. For an on-axis jet typical of SGRBs, the search effective volume is larger, but such a configuration is expected in at most a few percent of mergers. We further find that wide-field gamma-ray and X-ray limits rule out luminous on-axis SGRBs, for a large fraction of the localization regions, although these searches are not sufficiently deep in the context of the gamma-ray emission from GW170817 or off-axis SGRB afterglows. The results indicate that some optical follow-up searches are sufficiently deep for counterpart identification to about 300 Mpc, but that localizations better than 1000 deg(2) are likely essential. KW - binaries: close KW - gravitational waves KW - methods: observational KW - stars: black holes KW - stars: neutron Y1 - 2019 U6 - https://doi.org/10.3847/2041-8213/ab271c SN - 2041-8205 SN - 2041-8213 VL - 880 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Toala, Jesus A. A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer A1 - Ignace, Richard A1 - Sander, Andreas Alexander Christoph A1 - Shenar, Tomer A1 - Todt, Helge Tobias A1 - Chu, Y. -H. A1 - Guerrero, Martin A. A1 - Hainich, Rainer A1 - Torrejon, Jose Miguel T1 - On the Apparent Absence of Wolf-Rayet plus Neutron Star Systems BT - the Curious Case of WR124 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters N2 - Among the different types of massive stars in advanced evolutionary stages is the enigmatic WN8h type. There are only a few Wolf-Rayet (WR) stars with this spectral type in our Galaxy. It has long been suggested that WN8h-type stars are the products of binary evolution that may harbor neutron stars (NS). One of the most intriguing WN8h stars is the runaway WR 124 surrounded by its magnificent nebula M1-67. We test the presence of an accreting NS companion in WR 124 using similar to 100 ks long observations by the Chandra X-ray observatory. The hard X-ray emission from WR 124 with a luminosity of L-X similar to 10(31) erg s(-1) is marginally detected. We use the non-local thermodynamic equilibrium stellar atmosphere code PoWR to estimate the WR wind opacity to the X-rays. The wind of a WN8-type star is effectively opaque for X-rays, hence the low X-ray luminosity of WR 124 does not rule out the presence of an embedded compact object. We suggest that, in general, high-opacity WR winds could prevent X-ray detections of embedded NS, and be an explanation for the apparent lack of WR+NS systems. KW - circumstellar matter KW - ISM: jets and outflows KW - stars: massive KW - stars: evolution KW - stars: neutron KW - stars: Wolf-Rayet Y1 - 2018 U6 - https://doi.org/10.3847/2041-8213/aaf39d SN - 2041-8205 SN - 2041-8213 VL - 869 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Bozzo, Enrico A1 - Oskinova, Lida A1 - Lobel, A. A1 - Hamann, Wolf-Rainer T1 - The super-orbital modulation of supergiant high-mass X-ray binaries JF - Astronomy and astrophysics : an international weekly journal N2 - The long-term X-ray light curves of classical supergiant X-ray binaries and supergiant fast X-ray transients show relatively similar super-orbital modulations, which are still lacking a sound interpretation. We propose that these modulations are related to the presence of corotating interaction regions (CIRs) known to thread the winds of OB supergiants. To test this hypothesis, we couple the outcomes of three-dimensional (3D) hydrodynamic models for the formation of CIRs in stellar winds with a simplified recipe for the accretion onto a neutron star. The results show that the synthetic X-ray light curves are indeed modulated by the presence of the CIRs. The exact period and amplitude of these modulations depend on a number of parameters governing the hydrodynamic wind models and on the binary orbital configuration. To compare our model predictions with the observations, we apply the 3D wind structure previously shown to well explain the appearance of discrete absorption components in the UV time series of a prototypical B0.5I-type supergiant. Using the orbital parameters of IGRJ 16493-4348, which has the same B0.5I donor spectral type, the period and modulations in the simulated X-ray light curve are similar to the observed ones, thus providing support to our scenario. We propose that the presence of CIRs in donor star winds should be considered in future theoretical and simulation efforts of wind-fed X-ray binaries. KW - X-rays: stars KW - X-rays: binaries KW - gamma rays: stars KW - stars: massive KW - stars: neutron Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201731930 SN - 1432-0746 VL - 606 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Bozzo, Enrico A1 - Oskinova, Lida A1 - Feldmeier, Achim A1 - Falanga, M. T1 - Clumpy wind accretion in supergiant neutron star high mass X-ray binaries JF - BMC neuroscience N2 - The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain. KW - stars: neutron KW - X-rays: binaries KW - supergiants Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201628341 SN - 1432-0746 VL - 589 SP - 369 EP - 389 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Oskinova, Lida A1 - Feldmeier, Achim A1 - Kretschmar, Peter T1 - Clumped stellar winds in supergiant high-mass X-ray binaries: X-ray variability and photoionization JF - Monthly notices of the Royal Astronomical Society N2 - The clumping of massive star winds is an established paradigm, which is confirmed by multiple lines of evidence and is supported by stellar wind theory. The purpose of this paper is to bridge the gap between detailed models of inhomogeneous stellar winds in single stars and the phenomenological description of donor winds in supergiant high-mass X-ray binaries (HMXBs). We use the results from time-dependent hydrodynamical models of the instability in the line-driven wind of a massive supergiant star to derive the time-dependent accretion rate on to a compact object in the BondiHoyleLyttleton approximation. The strong density and velocity fluctuations in the wind result in strong variability of the synthetic X-ray light curves. The model predicts a large-scale X-ray variability, up to eight orders of magnitude, on relatively short time-scales. The apparent lack of evidence for such strong variability in the observed HMXBs indicates that the details of the accretion process act to reduce the variability resulting from the stellar wind velocity and density jumps. KW - accretion, accretion discs KW - instabilities KW - stars: neutron KW - X-rays: binaries KW - X-rays: stars Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-2966.2012.20507.x SN - 0035-8711 VL - 421 IS - 4 SP - 2820 EP - 2831 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Sturm, R. A1 - Haberl, F. A1 - Oskinova, Lida A1 - Schurch, M. P. E. A1 - Henault-Brunet, V. A1 - Gallagher, J. S. A1 - Udalski, A. T1 - Long-term evolution of the neutron-star spin period of SXP1062 JF - Astronomy and astrophysics : an international weekly journal N2 - Context. The Be/X-ray binary SXP 1062 is of especial interest owing to the large spin period of the neutron star, its large spin-down rate, and the association with a supernova remnant constraining its age. This makes the source an important probe for accretion physics. Aims. To investigate the long-term evolution of the spin period and associated spectral variations, we performed an XMM-Newton target-of-opportunity observation of SXP 1062 during X-ray outburst. Methods. Spectral and timing analysis of the XMM-Newton data was compared with previous studies, as well as complementary Swift/XRT monitoring and optical spectroscopy with the SALT telescope were obtained. Results. The spin period was measured to be P-s = (1071.01 +/- 0.16) s on 2012 Oct. 14. The X-ray spectrum is similar to that of previous observations. No convincing cyclotron absorption features, which could be indicative for a high magnetic field strength, are found. The high-resolution RGS spectra indicate the presence of emission lines, which may not completely be accounted for by the SNR emission. The comparison of multi-epoch optical spectra suggest an increasing size or density of the decretion disc around the Be star. Conclusions. SXP 1062 showed a net spin-down with an average of P-s = ( 2.27 +/- 0.44) s yr(-1) over a baseline of 915 days. KW - pulsars: individual: SXP1062 KW - galaxies: individual: Small Magellanic Cloud KW - stars: emission-line, Be KW - stars: neutron KW - X-rays: binaries Y1 - 2013 U6 - https://doi.org/10.1051/0004-6361/201321755 SN - 0004-6361 VL - 556 IS - 4 PB - EDP Sciences CY - Les Ulis ER -