TY - JOUR A1 - Goetze, Jan P. A1 - Greco, Claudio A1 - Mitric, Roland A1 - Bonacic-Koutecky, Vlasta A1 - Saalfrank, Peter T1 - BLUF Hydrogen network dynamics and UV/Vis spectra: A combined molecular dynamics and quantum chemical study JF - JOURNAL OF COMPUTATIONAL CHEMISTRY N2 - Blue light sensing using flavin (BLUF) protein photoreceptor domains change their hydrogen bond network after photoexcitation. To explore this phenomenon, BLUF domains from R. sphaeroides were simulated using Amber99 molecular dynamics (MD). Five starting configurations were considered, to study different BLUF proteins (AppA/BlrB), Trp conformations (Win/Wout), structure determination (X-ray/NMR), and finally, His protonation states. We found dependencies of the hydrogen bonds on almost all parameters. Our data show an especially strong correlation of the Trp position and hydrogen bonds involving Gln63. The latter is in some contradiction to earlier results (Obanayama et al., Photochem. Photobiol. 2008, 84 10031010). Possible origins and implications are discussed. Our calculations support conjectures that Gln63 is more flexible with Trp104 in Win position. Using snapshots from MD and time-dependent density functional theory, UV/vis spectra for the chromophore were determined, which account for molecular motion of the protein under ambient conditions. In accord with experiment, it is found that the UV/vis spectra of BLUF bound flavin are red-shifted and thermally broadened for all calculated p ? p* transitions, relative to gas phase flavin at T = 0 K. However, differences in the spectra between the various BLUF configurations cannot be resolved with the present approach. (c) 2012 Wiley Periodicals, Inc. KW - blue-light sensor KW - flavin KW - molecular dynamics KW - TD-DFT KW - BLUF domains Y1 - 2012 U6 - https://doi.org/10.1002/jcc.23056 SN - 0192-8651 VL - 33 IS - 28 SP - 2233 EP - 2242 PB - WILEY-BLACKWELL CY - HOBOKEN ER -