TY - JOUR A1 - Pikovskij, Arkadij T1 - Transition to synchrony in chiral active particles JF - Journal of physics. Complexity N2 - I study deterministic dynamics of chiral active particles in two dimensions. Particles are considered as discs interacting with elastic repulsive forces. An ensemble of particles, started from random initial conditions, demonstrates chaotic collisions resulting in their normal diffusion. This chaos is transient, as rather abruptly a synchronous collisionless state establishes. The life time of chaos grows exponentially with the number of particles. External forcing (periodic or chaotic) is shown to facilitate the synchronization transition. KW - active particles KW - chirality KW - synchronization KW - chaos KW - transient chaos Y1 - 2021 U6 - https://doi.org/10.1088/2632-072X/abdadb SN - 2632-072X VL - 2 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Kuznetsov, Alexander P. A1 - Turukina, Ludmila V. A1 - Chernyshov, Nikolai Yu A1 - Sedova, Yuliya V. T1 - Oscillations and Synchronization in a System of Three Reactively Coupled Oscillators JF - International journal of bifurcation and chaos : in applied sciences and engineering N2 - We consider a system of three interacting van der Pol oscillators with reactive coupling. Phase equations are derived, using proper order of expansion over the coupling parameter. The dynamics of the system is studied by means of the bifurcation analysis and with the method of Lyapunov exponent charts. Essential and physically meaningful features of the reactive coupling are discussed. KW - Synchronization KW - quasi-periodic oscillation KW - bifurcation KW - chaos Y1 - 2016 U6 - https://doi.org/10.1142/S0218127416500103 SN - 0218-1274 SN - 1793-6551 VL - 26 SP - 31 EP - 39 PB - World Scientific CY - Singapore ER - TY - JOUR A1 - Kruglov, Vyacheslav P. A1 - Kuznetsov, Sergey P. A1 - Pikovskij, Arkadij T1 - Attractor of Smale - Williams type in an autonomous distributed system JF - Regular and chaotic dynamics : international scientific journal N2 - We consider an autonomous system of partial differential equations for a one-dimensional distributed medium with periodic boundary conditions. Dynamics in time consists of alternating birth and death of patterns with spatial phases transformed from one stage of activity to another by the doubly expanding circle map. So, the attractor in the Poincar, section is uniformly hyperbolic, a kind of Smale - Williams solenoid. Finite-dimensional models are derived as ordinary differential equations for amplitudes of spatial Fourier modes (the 5D and 7D models). Correspondence of the reduced models to the original system is demonstrated numerically. Computational verification of the hyperbolicity criterion is performed for the reduced models: the distribution of angles of intersection for stable and unstable manifolds on the attractor is separated from zero, i.e., the touches are excluded. The example considered gives a partial justification for the old hopes that the chaotic behavior of autonomous distributed systems may be associated with uniformly hyperbolic attractors. KW - Smale - Williams solenoid KW - hyperbolic attractor KW - chaos KW - Swift - Hohenberg equation KW - Lyapunov exponent Y1 - 2014 U6 - https://doi.org/10.1134/S1560354714040042 SN - 1560-3547 SN - 1468-4845 VL - 19 IS - 4 SP - 483 EP - 494 PB - Pleiades Publ. CY - New York ER - TY - JOUR A1 - Berenstein, Igal A1 - Beta, Carsten T1 - Flow-induced control of chemical turbulence JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We report spatiotemporal chaos in the Oregonator model of the Belousov-Zhabotinsky reaction. Spatiotemporal chaos spontaneously develops in a regime, where the underlying local dynamics show stable limit cycle oscillations (diffusion-induced turbulence). We show that spatiotemporal chaos can be suppressed by a unidirectional flow in the system. With increasing flow velocity, we observe a transition scenario from spatiotemporal chaos via a regime of travelling waves to a stationary steady state. At large flow velocities, we recover the known regime of flow distributed oscillations. KW - chaos KW - chemical equilibrium KW - chemically reactive flow KW - reaction kinetics theory KW - spatiotemporal phenomena KW - turbulence Y1 - 2011 U6 - https://doi.org/10.1063/1.3656248 SN - 0021-9606 VL - 135 IS - 16 PB - American Institute of Physics CY - Melville ER -