TY - JOUR A1 - Belaid, Mohamed Karim A1 - Rabus, Maximilian A1 - Krestel, Ralf T1 - CrashNet BT - an encoder-decoder architecture to predict crash test outcomes JF - Data mining and knowledge discovery N2 - Destructive car crash tests are an elaborate, time-consuming, and expensive necessity of the automotive development process. Today, finite element method (FEM) simulations are used to reduce costs by simulating car crashes computationally. We propose CrashNet, an encoder-decoder deep neural network architecture that reduces costs further and models specific outcomes of car crashes very accurately. We achieve this by formulating car crash events as time series prediction enriched with a set of scalar features. Traditional sequence-to-sequence models are usually composed of convolutional neural network (CNN) and CNN transpose layers. We propose to concatenate those with an MLP capable of learning how to inject the given scalars into the output time series. In addition, we replace the CNN transpose with 2D CNN transpose layers in order to force the model to process the hidden state of the set of scalars as one time series. The proposed CrashNet model can be trained efficiently and is able to process scalars and time series as input in order to infer the results of crash tests. CrashNet produces results faster and at a lower cost compared to destructive tests and FEM simulations. Moreover, it represents a novel approach in the car safety management domain. KW - Predictive models KW - Time series analysis KW - Supervised deep neural KW - networks KW - Car safety management Y1 - 2021 U6 - https://doi.org/10.1007/s10618-021-00761-9 SN - 1384-5810 SN - 1573-756X VL - 35 IS - 4 SP - 1688 EP - 1709 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Zhelayskaya, Irina S. A1 - Vasile, Ruggero A1 - Shprits, Yuri Y. A1 - Stolle, Claudia A1 - Matzka, Jürgen T1 - Systematic Analysis of Machine Learning and Feature Selection Techniques for Prediction of the Kp Index JF - Space Weather: The International Journal of Research and Applications N2 - The Kp index is a measure of the midlatitude global geomagnetic activity and represents short-term magnetic variations driven by solar wind plasma and interplanetary magnetic field. The Kp index is one of the most widely used indicators for space weather alerts and serves as input to various models, such as for the thermosphere and the radiation belts. It is therefore crucial to predict the Kp index accurately. Previous work in this area has mostly employed artificial neural networks to nowcast Kp, based their inferences on the recent history of Kp and on solar wind measurements at L1. In this study, we systematically test how different machine learning techniques perform on the task of nowcasting and forecasting Kp for prediction horizons of up to 12 hr. Additionally, we investigate different methods of machine learning and information theory for selecting the optimal inputs to a predictive model. We illustrate how these methods can be applied to select the most important inputs to a predictive model of Kp and to significantly reduce input dimensionality. We compare our best performing models based on a reduced set of optimal inputs with the existing models of Kp, using different test intervals, and show how this selection can affect model performance. KW - Kp index KW - Predictive models KW - Feature selection KW - Machine learning KW - Validation Y1 - 2019 U6 - https://doi.org/10.1029/2019SW002271 SN - 1542-7390 VL - 17 IS - 10 SP - 1461 EP - 1486 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Kayhan Wagner, Ezgi A1 - Meyer, Marlene A1 - O’Reilly, J.X. A1 - Hunnius, Sabine A1 - Bekkering, Harold T1 - Nine-month-old infants update their predictive models of a changing environment JF - Developmental Cognitive Neuroscience : a journal for cognitive, affective and social developmental neuroscience N2 - Humans generate internal models of their environment to predict events in the world. As the environments change, our brains adjust to these changes by updating their internal models. Here, we investigated whether and how 9-month-old infants differentially update their models to represent a dynamic environment. Infants observed a predictable sequence of stimuli, which were interrupted by two types of cues. Following the update cue, the pattern was altered, thus, infants were expected to update their predictions for the upcoming stimuli. Because the pattern remained the same after the no-update cue, no subsequent updating was required. Infants showed an amplified negative central (Nc) response when the predictable sequence was interrupted. Late components such as the PSW were also evoked in response to unexpected stimuli; however, we found no evidence for a differential response to the informational value of surprising cues at later stages of processing. Infants rather learned that surprising cues always signal a change in the environment that requires updating. Interestingly, infants responded with an amplified neural response to the absence of an expected change, suggesting a top-down modulation of early sensory processing in infants. Our findings corroborate emerging evidence showing that infants build predictive models early in life. KW - Internal models KW - Predictive models KW - Predictive processing KW - Development KW - Event-Related potentials Y1 - 2019 U6 - https://doi.org/10.1016/j.dcn.2019.100680 SN - 1878-9293 SN - 1878-9307 VL - 38 PB - Elsevier CY - Amsterdam ER -