TY - JOUR A1 - Guillemoteau, Julien A1 - Simon, Francois-Xavier A1 - Hulin, Guillaume A1 - Dousteyssier, Bertrand A1 - Dacko, Marion A1 - Tronicke, Jens T1 - 3-D imaging of subsurface magnetic permeability/susceptibility with portable frequency domain electromagnetic sensors for near surface exploration JF - Geophysical journal international N2 - The in-phase response collected by portable loop-loop electromagnetic induction (EMI) sensors operating at low and moderate induction numbers (<= 1) is typically used for sensing the magnetic permeability (or susceptibility) of the subsurface. This is due to the fact that the in-phase response contains a small induction fraction and a preponderant induced magnetization fraction. The magnetization fraction follows the magneto-static equations similarly to the magnetic method but with an active magnetic source. The use of an active source offers the possibility to collect data with several loop-loop configurations, which illuminate the subsurface with different sensitivity patterns. Such multiconfiguration soundings thereby allows the imaging of subsurface magnetic permeability/susceptibility variations through an inversion procedure. This method is not affected by the remnant magnetization and theoretically overcomes the classical depth ambiguity generally encountered with passive geomagnetic data. To invert multiconfiguration in-phase data sets, we propose a novel methodology based on a full-grid 3-D multichannel deconvolution (MCD) procedure. This method allows us to invert large data sets (e.g. consisting of more than a hundred thousand of data points) for a dense voxel-based 3-D model of magnetic susceptibility subject to smoothness constraints. In this study, we first present and discuss synthetic examples of our imaging procedure, which aim at simulating realistic conditions. Finally, we demonstrate the applicability of our method to field data collected across an archaeological site in Auvergne (France) to image the foundations of a Gallo-Roman villa built with basalt rock material. Our synthetic and field data examples demonstrate the potential of the proposed inversion procedure offering new and complementary ways to interpret data sets collected with modern EMI instruments. KW - Magnetic properties KW - Controlled source electromagnetics (CSEM) KW - Electromagnetic theory KW - Environmental magnetism KW - Inverse theory Y1 - 2019 U6 - https://doi.org/10.1093/gji/ggz382 SN - 0956-540X SN - 1365-246X VL - 219 IS - 3 SP - 1773 EP - 1785 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Streich, R. A1 - Becken, Michael T1 - Sensitivity of controlled-source electromagnetic fields in planarly layered media JF - Geophysical journal international N2 - The study of electromagnetic (EM) field sensitivities is useful for assessing the feasibility of controlled-source electromagnetic (CSEM) surveys. Sensitivity calculations are also a principal building block of EM inversion schemes. Sensitivities are formally given by the derivatives of the EM field components with respect to conductivity. For horizontally layered media, these derivatives can be evaluated analytically, offering advantages in computational efficiency and accuracy over numerical evaluation. We present a complete set of explicit analytic expressions for the EM field sensitivities in 1-D VTI-anisotropic media for horizontal and vertical electric and magnetic dipole sources, and also for finite horizontal electric sources. Since our derivations are based on a formulation for EM fields that is quite general in allowing for sources and receivers at any depth, our sensitivity expressions exhibit the same generality. We verify our expressions by comparison to numerical solutions, and finally present application examples that demonstrate the utility and versatility of these expressions for CSEM feasibility studies. KW - Electromagnetic theory Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-246X.2011.05203.x SN - 0956-540X VL - 187 IS - 2 SP - 705 EP - 728 PB - Wiley-Blackwell CY - Hoboken ER -