TY - JOUR A1 - Nguyen, Manh Duy Linh A1 - Mamonekene, Victor A1 - Vater, Marianne A1 - Bartsch, Peter A1 - Tiedemann, Ralph A1 - Kirschbaum, Frank T1 - Ontogeny of electric organ and electric organ discharge in Campylomormyrus rhynchophorus (Teleostei: Mormyridae) JF - Journal of comparative physiology; A, Neuroethology, sensory, neural, and behavioral physiology N2 - The aim of this study was a longitudinal description of the ontogeny of the adult electric organ of Campylomormyrus rhynchophorus which produces as adult an electric organ discharge of very long duration (ca. 25 ms). We could indeed show (for the first time in a mormyrid fish) that the electric organ discharge which is first produced early during ontogeny in 33-mm-long juveniles is much shorter in duration and has a different shape than the electric organ discharge in 15-cm-long adults. The change from this juvenile electric organ discharges into the adult electric organ discharge takes at least a year. The increase in electric organ discharge duration could be causally linked to the development of surface evaginations, papillae, at the rostral face of the electrocyte which are recognizable for the first time in 65-mm-long juveniles and are most prominent at the periphery of the electrocyte. KW - Weakly electric fish KW - Development KW - Electric organ discharge KW - Electric KW - organ KW - Electrocyte features Y1 - 2020 U6 - https://doi.org/10.1007/s00359-020-01411-z SN - 0340-7594 SN - 1432-1351 VL - 206 IS - 3 SP - 453 EP - 466 PB - Springer CY - Berlin ; Heidelberg ER - TY - JOUR A1 - Ren, Jie A1 - Höhle, Barbara T1 - The interplay between language acquisition and cognitive development JF - Infant behavior & development : an international and interdisciplinary journal KW - Language Acquisition KW - Cognitive Development KW - Infancy KW - Cross-domain KW - Development Y1 - 2022 U6 - https://doi.org/10.1016/j.infbeh.2022.101718 SN - 0163-6383 SN - 1879-0453 SN - 1934-8800 VL - 67 PB - Elsevier Science CY - Amsterdam ER - TY - JOUR A1 - Mkaouer, Bessem A1 - Hammoudi-Nassib, Sarra A1 - Amara, Samiha A1 - Chaabene, Helmi T1 - Evaluating the physical and basic gymnastics skills assessment for International Gymnastics Federation JF - Biology of Sport N2 - This study aimed to determine the specific physical and basic gymnastics skills considered critical in gymnastics talent identification and selection as well as in promoting men's artistic gymnastics performances. Fifty-one boys from a provincial gymnastics team (age 11.03 ± 0.95 years; height 1.33 ± 0.05 m; body mass 30.01 ± 5.53 kg; body mass index [BMI] 16.89 ± 3.93 kg/m²) regularly competing at national level voluntarily participated in this study. Anthropometric measures as well as the men's artistic gymnastics physical test battery (i.e., International Gymnastics Federation [FIG] age group development programme) were used to assess the somatic and physical fitness profile of participants, respectively. The physical characteristics assessed were: muscle strength, flexibility, speed, endurance, and muscle power. Test outcomes were subjected to a principal components analysis to identify the most representative factors. The main findings revealed that power speed, isometric and explosive strength, strength endurance, and dynamic and static flexibility are the most determinant physical fitness aspects of the talent selection process in young male artistic gymnasts. These findings are of utmost importance for talent identification, selection, and development. KW - Young male gymnast KW - Fitness performance KW - Assessment KW - Selection KW - Development Y1 - 2018 U6 - https://doi.org/10.5114/biolsport.2018.78059 SN - 0860-021X SN - 2083-1862 VL - 35 IS - 4 SP - 383 EP - 392 PB - Inst Sport CY - Warsaw ER - TY - JOUR A1 - Ruszkiewicz, Joanna A. A1 - de Macedo, Gabriel Teixeira A1 - Miranda-Vizuete, Antonio A1 - Teixeira da Rocha, Joao B. A1 - Bowman, Aaron B. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Aschner, Michael T1 - The cytoplasmic thioredoxin system in Caenorhabditis elegans affords protection from methylmercury in an age-specific manner JF - Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system N2 - Methylmercury (MeHg) is an environmental pollutant linked to many neurological defects, especially in developing individuals. The thioredoxin (TRX) system is a key redox regulator affected by MeHg toxicity, however the mechanisms and consequences of MeHg-induced dysfunction are not completely understood. This study evaluated the role of the TRX system in C. elegans susceptibility to MeHg during development. Worms lacking or overexpressing proteins from the TRX family were exposed to MeHg for 1 h at different developmental stage: L1, L4 and adult. Worms without cytoplasmic thioredoxin system exhibited age-specific susceptibility to MeHg when compared to wild-type (wt). This susceptibility corresponded partially to decreased total glutathione (GSH) levels and enhanced degeneration of dopaminergic neurons. In contrast, the overexpression of the cytoplasmic system TRX-1/TRXR-1 did not provide substantial protection against MeHg. Moreover, transgenic worms exhibited decreased protein expression for cytoplasmic thioredoxin reductase (TRXR-1). Both mitochondrial thioredoxin system TRX-2/TRXR-2, as well as other thioredoxin-like proteins: TRX-3, TRX-4, TRX-5 did not show significant role in C. elegans resistance to MeHg. Based on the current findings, the cytoplasmic thioredoxin system TRX-1/TRXR-1 emerges as an important age-sensitive protectant against MeHg toxicity in C. elegans. KW - Methylmercury KW - Age KW - Development KW - C. elegans KW - Thioredoxin KW - Thioredoxin reductase Y1 - 2018 U6 - https://doi.org/10.1016/j.neuro.2018.08.007 SN - 0161-813X SN - 1872-9711 VL - 68 SP - 189 EP - 202 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kohnen, Saskia A1 - Nickels, Lyndsey A1 - Geigis, Leonie A1 - Coltheart, Max A1 - McArthur, Genevieve A1 - Castles, Anne T1 - Variations within a subtype BT - Developmental surface dyslexias in English JF - Cortex : a journal devoted to the study of the nervous system and behaviour N2 - Surface dyslexia is characterised by poor reading of irregular words while nonword reading can be completely normal. Previous work has identified several theoretical possibilities for the underlying locus of impairment in surface dyslexia. In this study, we systematically investigated whether children with surface dyslexia showed different patterns of reading performance that could be traced back to different underlying levels of impairment. To do this, we tested 12 English readers, replicating previous work in Hebrew (Gvion & Friedmann, 2013; 2016; Friedmann & Lukov, 2008; Friedmann & Gvion, 2016). In our sample, we found that poor irregular word reading was associated with deficits at the level of the orthographic input lexicon and with impaired access to meaning and spoken word forms after processing written words in the orthographic input lexicon. There were also children whose surface dyslexia seemed to be caused by impairments of the phonological output lexicon. We suggest that further evidence is required to unequivocally support a fourth pattern where the link between orthography and meaning is intact while the link between orthography and spoken word forms is not functioning. All patterns found were consistent with dual route theory while possible patterns of results, which would be inconsistent with dual route theory, were not detected. Crown Copyright (C) 2018 Published by Elsevier Ltd. All rights reserved. KW - Reading difficulties KW - Proximal causes KW - Dissociations KW - Development Y1 - 2018 U6 - https://doi.org/10.1016/j.cortex.2018.04.008 SN - 0010-9452 SN - 1973-8102 VL - 106 SP - 151 EP - 163 PB - Elsevier CY - Paris ER - TY - JOUR A1 - Jacques, Mauricio Tavares A1 - Bornhorst, Julia A1 - Soares, Marcell Valandro A1 - Schwerdtle, Tanja A1 - Garcia, Solange A1 - Avila, Daiana Silva T1 - Reprotoxicity of glyphosate-based formulation in Caenorhabditis elegans is not due to the active ingredient only JF - Environmental pollution N2 - Pesticides guarantee us high productivity in agriculture, but the long-term costs have proved too high. Acute and chronic intoxication of humans and animals, contamination of soil, water and food are the consequences of the current demand and sales of these products. In addition, pesticides such as glyphosate are sold in commercial formulations which have inert ingredients, substances with unknown composition and proportion. Facing this scenario, toxicological studies that investigate the interaction between the active principle and the inert ingredients are necessary. The following work proposed comparative toxicology studies between glyphosate and its commercial formulation using the alternative model Caenorhabditis elegans. Worms were exposed to different concentrations of the active ingredient (glyphosate in monoisopropylamine salt) and its commercial formulation. Reproductive capacity was evaluated through brood size, morphological analysis of oocytes and through the MD701 strain (bcIs39), which allows the visualization of germ cells in apoptosis. In addition, the metal composition in the commercial formulation was analyzed by ICP-MS. Only the commercial formulation of glyphosate showed significant negative effects on brood size, body length, oocyte size, and the number of apoptotic cells. Metal analysis showed the presence of Hg, Fe, Mn, Cu, Zn, As, Cd and Pb in the commercial formulation, which did not cause reprotoxicity at the concentrations found. However, metals can bio-accumulate in soil and water and cause environmental impacts. Finally, we demonstrated that the addition of inert ingredients increased the toxic profile of the active ingredient glyphosate in C. elegans, which reinforces the need of components description in the product labels. (C) 2019 Elsevier Ltd. All rights reserved. KW - Glyphosate KW - Inert ingredients KW - Reproduction KW - Oocytes KW - Development KW - Metals Y1 - 2019 U6 - https://doi.org/10.1016/j.envpol.2019.06.099 SN - 0269-7491 SN - 1873-6424 VL - 252 SP - 1854 EP - 1862 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - de Vinuesa, Amaya Garcia A1 - Abdelilah-Seyfried, Salim A1 - Knaus, Petra A1 - Zwijsen, An A1 - Bailly, Sabine T1 - BMP signaling in vascular biology and dysfunction JF - New journal of physics : the open-access journal for physics N2 - The vascular system is critical for developmental growth, tissue homeostasis and repair but also for tumor development. Bone morphogenetic protein (BMP) signaling has recently emerged as a fundamental pathway of the endothelium by regulating cardiovascular and lymphatic development and by being causative for several vascular dysfunctions. Two vascular disorders have been directly linked to impaired BMP signaling: pulmonary arterial hypertension and hereditary hemorrhagic telangiectasia. Endothelial BMP signaling critically depends on the cellular context, which includes among others vascular heterogeneity, exposure to flow, and the intertwining with other signaling cascades (Notch, WNT, Hippo and hypoxia). The purpose of this review is to highlight the most recent findings illustrating the clear need for reconsidering the role of BMPs in vascular biology. (C) 2015 Elsevier Ltd. All rights reserved. KW - Bone morphogenetic proteins (BMP) KW - Signaling KW - Vasculature KW - Development KW - Disease Y1 - 2016 U6 - https://doi.org/10.1016/j.cytogfr.2015.12.005 SN - 1359-6101 SN - 1879-0305 VL - 27 SP - 65 EP - 79 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kayhan Wagner, Ezgi A1 - Meyer, Marlene A1 - O’Reilly, J.X. A1 - Hunnius, Sabine A1 - Bekkering, Harold T1 - Nine-month-old infants update their predictive models of a changing environment JF - Developmental Cognitive Neuroscience : a journal for cognitive, affective and social developmental neuroscience N2 - Humans generate internal models of their environment to predict events in the world. As the environments change, our brains adjust to these changes by updating their internal models. Here, we investigated whether and how 9-month-old infants differentially update their models to represent a dynamic environment. Infants observed a predictable sequence of stimuli, which were interrupted by two types of cues. Following the update cue, the pattern was altered, thus, infants were expected to update their predictions for the upcoming stimuli. Because the pattern remained the same after the no-update cue, no subsequent updating was required. Infants showed an amplified negative central (Nc) response when the predictable sequence was interrupted. Late components such as the PSW were also evoked in response to unexpected stimuli; however, we found no evidence for a differential response to the informational value of surprising cues at later stages of processing. Infants rather learned that surprising cues always signal a change in the environment that requires updating. Interestingly, infants responded with an amplified neural response to the absence of an expected change, suggesting a top-down modulation of early sensory processing in infants. Our findings corroborate emerging evidence showing that infants build predictive models early in life. KW - Internal models KW - Predictive models KW - Predictive processing KW - Development KW - Event-Related potentials Y1 - 2019 U6 - https://doi.org/10.1016/j.dcn.2019.100680 SN - 1878-9293 SN - 1878-9307 VL - 38 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Stapel, Janny C. A1 - Hunnius, Sabine A1 - Bekkering, Harold A1 - Lindemann, Oliver T1 - The development of numerosity estimation: Evidence for a linear number representation early in life JF - Journal of cognitive psychology N2 - Several studies investigating the development of approximate number representations used the number-to-position task and reported evidence for a shift from a logarithmic to a linear representation of numerical magnitude with increasing age. However, this interpretation as well as the number-to-position method itself has been questioned recently. The current study tested 5- and 8-year-old children on a newly established numerosity production task to examine developmental changes in number representations and to test the idea of a representational shift. Modelling of the children's numerical estimations revealed that responses of the 8-year-old children approximate a simple positive linear relation between estimated and actual numbers. Interestingly, however, the estimations of the 5-year-old children were best described by a bilinear model reflecting a relatively accurate linear representation of small numbers and no apparent magnitude knowledge for large numbers. Taken together, our findings provide no support for a shift of mental representations from a logarithmic to a linear metric but rather suggest that the range of number words which are appropriately conceptualised and represented by linear analogue magnitude codes expands during development. KW - Numerical estimation KW - Number cognition KW - Development KW - Bilinear models KW - Number representation Y1 - 2015 U6 - https://doi.org/10.1080/20445911.2014.995668 SN - 2044-5911 SN - 2044-592X VL - 27 IS - 4 SP - 400 EP - 412 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - von der Malsburg, Titus Raban A1 - Kliegl, Reinhold A1 - Vasishth, Shravan T1 - Determinants of Scanpath Regularity in Reading JF - Cognitive science : a multidisciplinary journal of anthropology, artificial intelligence, education, linguistics, neuroscience, philosophy, psychology ; journal of the Cognitive Science Society N2 - Scanpaths have played an important role in classic research on reading behavior. Nevertheless, they have largely been neglected in later research perhaps due to a lack of suitable analytical tools. Recently, von der Malsburg and Vasishth (2011) proposed a new measure for quantifying differences between scanpaths and demonstrated that this measure can recover effects that were missed with the traditional eyetracking measures. However, the sentences used in that study were difficult to process and scanpath effects accordingly strong. The purpose of the present study was to test the validity, sensitivity, and scope of applicability of the scanpath measure, using simple sentences that are typically read from left to right. We derived predictions for the regularity of scanpaths from the literature on oculomotor control, sentence processing, and cognitive aging and tested these predictions using the scanpath measure and a large database of eye movements. All predictions were confirmed: Sentences with short words and syntactically more difficult sentences elicited more irregular scanpaths. Also, older readers produced more irregular scanpaths than younger readers. In addition, we found an effect that was not reported earlier: Syntax had a smaller influence on the eye movements of older readers than on those of young readers. We discuss this interaction of syntactic parsing cost with age in terms of shifts in processing strategies and a decline of executive control as readers age. Overall, our results demonstrate the validity and sensitivity of the scanpath measure and thus establish it as a productive and versatile tool for reading research. KW - Eye movements KW - Reading KW - Scanpaths KW - Language understanding KW - Oculo-motor control KW - Individual differences KW - Aging KW - Development Y1 - 2015 U6 - https://doi.org/10.1111/cogs.12208 SN - 0364-0213 SN - 1551-6709 VL - 39 IS - 7 SP - 1675 EP - 1703 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Peres, Tanara V. A1 - Eyng, Helena A1 - Lopes, Samantha C. A1 - Colle, Dirleise A1 - Goncalves, Filipe M. A1 - Venske, Debora K. R. A1 - Lopes, Mark W. A1 - Ben, Juliana A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Aschner, Michael A. A1 - Farina, Marcelo A1 - Prediger, Rui D. A1 - Leal, Rodrigo B. T1 - Developmental exposure to manganese induces lasting motor and cognitive impairment in rats JF - Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system N2 - Exposure to high manganese (Mn) levels may damage the basal ganglia, leading to a syndrome analogous to Parkinson's disease, with motor and cognitive impairments. The molecular mechanisms underlying Mn neurotoxicity, particularly during development, still deserve further investigation. Herein, we addressed whether early-life Mn exposure affects motor coordination and cognitive function in adulthood and potential underlying mechanisms. Male Wistar rats were exposed intraperitoneally to saline (control) or MnCl2 (5, 10 or 20 mg/kg/day) from post-natal day (PND) 8-12. Behavioral tests were performed on PND 60-65 and biochemical analysis in the striatum and hippocampus were performed on PND14 or PND70. Rats exposed to Mn (10 and 20 mg/kg) performed significantly worse on the rotarod test than controls indicating motor coordination and balance impairments. The object and social recognition tasks were used to evaluate short-term memory. Rats exposed to the highest Mn dose failed to recognize a familiar object when replaced by a novel object as well as to recognize a familiar juvenile rat after a short period of time. However, Mn did not alter olfactory discrimination ability. In addition, Mn-treated rats displayed decreased levels of non-protein thiols (e.g. glutathione) and increased levels of glial fibrillary acidic protein (GFAP) in the striatum. Moreover, Mn significantly increased hippocampal glutathione peroxidase (GPx) activity. These findings demonstrate that acute low-level exposure to Mn during a critical neurodevelopmental period causes cognitive and motor dysfunctions that last into adulthood, that are accompanied by alterations in antioxidant defense system in both the hippocampus and striatum. (C) 2015 Elsevier Inc. All rights reserved. KW - Manganese KW - Neurotoxicity KW - Development KW - Motor coordination KW - Cognition Y1 - 2015 U6 - https://doi.org/10.1016/j.neuro.2015.07.005 SN - 0161-813X SN - 1872-9711 VL - 50 SP - 28 EP - 37 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Müller-Röber, Bernd A1 - Balazadeh, Salma T1 - Auxin and its role in plant senescence JF - Journal of plant growth regulation N2 - Leaf senescence represents a key developmental process through which resources trapped in the photosynthetic organ are degraded in an organized manner and transported away to sustain the growth of other organs including newly forming leaves, roots, seeds, and fruits. The optimal timing of the initiation and progression of senescence are thus prerequisites for controlled plant growth, biomass accumulation, and evolutionary success through seed dispersal. Recent research has uncovered a multitude of regulatory factors including transcription factors, micro-RNAs, protein kinases, and others that constitute the molecular networks that regulate senescence in plants. The timing of senescence is affected by environmental conditions and abiotic or biotic stresses typically trigger a faster senescence. Various phytohormones, including for example ethylene, abscisic acid, and salicylic acid, promote senescence, whereas cytokinins delay it. Recently, several reports have indicated an involvement of auxin in the control of senescence, however, its mode of action and point of interference with senescence control mechanisms remain vaguely defined at present and contrasting observations regarding the effect of auxin on senescence have so far hindered the establishment of a coherent model. Here, we summarize recent studies on auxin-related genes that affect senescence in plants and highlight how these findings might be integrated into current molecular-regulatory models of senescence. KW - ARF KW - Auxin KW - Chloroplast KW - Development KW - Leaf KW - SAUR KW - Senescence KW - Signaling KW - Transcription factor KW - YUCCA Y1 - 2014 U6 - https://doi.org/10.1007/s00344-013-9398-5 SN - 0721-7595 SN - 1435-8107 VL - 33 IS - 1 SP - 21 EP - 33 PB - Springer CY - New York ER - TY - JOUR A1 - Huynen, Leon A1 - Suzuki, Takayuki A1 - Ogura, Toshihiko A1 - Watanabe, Yusuke A1 - Millar, Craig D. A1 - Hofreiter, Michael A1 - Smith, Craig A1 - Mirmoeini, Sara A1 - Lambert, David M. T1 - Reconstruction and in vivo analysis of the extinct tbx5 gene from ancient wingless moa (Aves: Dinornithiformes) JF - BMC evolutionary biology N2 - Background: The forelimb-specific gene tbx5 is highly conserved and essential for the development of forelimbs in zebrafish, mice, and humans. Amongst birds, a single order, Dinornithiformes, comprising the extinct wingless moa of New Zealand, are unique in having no skeletal evidence of forelimb-like structures. Results: To determine the sequence of tbx5 in moa, we used a range of PCR-based techniques on ancient DNA to retrieve all nine tbx5 exons and splice sites from the giant moa, Dinornis. Moa Tbx5 is identical to chicken Tbx5 in being able to activate the downstream promotors of fgf10 and ANF. In addition we show that missexpression of moa tbx5 in the hindlimb of chicken embryos results in the formation of forelimb features, suggesting that Tbx5 was fully functional in wingless moa. An alternatively spliced exon 1 for tbx5 that is expressed specifically in the forelimb region was shown to be almost identical between moa and ostrich, suggesting that, as well as being fully functional, tbx5 is likely to have been expressed normally in moa since divergence from their flighted ancestors, approximately 60 mya. KW - tbx5 KW - Moa KW - Gene expression KW - Ancient DNA KW - Development KW - Forelimb Y1 - 2014 U6 - https://doi.org/10.1186/1471-2148-14-75 SN - 1471-2148 VL - 14 PB - BioMed Central CY - London ER - TY - JOUR A1 - Schippers, Jos H. M. A1 - Nguyen, Hung M. A1 - Lu, Dandan A1 - Schmidt, Romy A1 - Müller-Röber, Bernd T1 - ROS homeostasis during development: an evolutionary conserved strategy JF - Cellular and molecular life sciences N2 - The balance between cellular proliferation and differentiation is a key aspect of development in multicellular organisms. Recent studies on Arabidopsis roots revealed distinct roles for different reactive oxygen species (ROS) in these processes. Modulation of the balance between ROS in proliferating cells and elongating cells is controlled at least in part at the transcriptional level. The effect of ROS on proliferation and differentiation is not specific for plants but appears to be conserved between prokaryotic and eukaryotic life forms. The ways in which ROS is received and how it affects cellular functioning is discussed from an evolutionary point of view. The different redox-sensing mechanisms that evolved ultimately result in the activation of gene regulatory networks that control cellular fate and decision-making. This review highlights the potential common origin of ROS sensing, indicating that organisms evolved similar strategies for utilizing ROS during development, and discusses ROS as an ancient universal developmental regulator. KW - Evolution KW - Reactive oxygen species KW - Development Y1 - 2012 U6 - https://doi.org/10.1007/s00018-012-1092-4 SN - 1420-682X VL - 69 IS - 19 SP - 3245 EP - 3257 PB - Springer CY - Basel ER - TY - JOUR A1 - Hohmann, S. A1 - Buchmann, Arlette F. A1 - Witt, S. H. A1 - Rietschel, M. A1 - Jennen-Steinmetz, Christine A1 - Schmidt, M. H. A1 - Esser, Günter A1 - Banaschewski, Tobias A1 - Laucht, Manfred T1 - Increasing association between a neuropeptide Y promoter polymorphism and body mass index during the course of development JF - Pediatric obesity N2 - Objective: To investigate the association of the neuropeptide Y (NPY) promoter polymorphism rs16147 with body mass index (BMI) during the course of development from infancy to adulthood. Design: Longitudinal, prospective study of a German community sample. Subjects: n = 306 young adults (139 males, 167 females). Measurements: Participants' body weight and height were assessed at the ages of 3 months and 2, 4.5, 8, 11, 15 and 19 years. NPY rs16147 was genotyped. Results: Controlling for a number of possible confounders, homozygote carriers of the rs16147 C allele exhibited significantly lower BMI scores when compared with individuals carrying the T allele. In addition, a significant genotype by age interaction emerged, indicating that the genotype effect increased during the course of development. Conclusions: This is the first longitudinal study to report an association between rs16147 and BMI during childhood and adolescence. The finding that this effect increased during the course of development may either be due to age-dependent alterations in gene expression or to maturation processes within the weight regulation circuits of the central nervous system. KW - Development KW - neuropeptide Y KW - rs16147 KW - weight regulation Y1 - 2012 U6 - https://doi.org/10.1111/j.2047-6310.2012.00069.x SN - 2047-6310 VL - 7 IS - 6 SP - 453 EP - 460 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Tsukaya, Hirokazu A1 - Byrne, Mary E. A1 - Horiguchi, Gorou A1 - Sugiyama, Munetaka A1 - Van Lijsebettens, Mieke A1 - Lenhard, Michael T1 - How do 'housekeeping' genes control organogenesis?-unexpected new findings on the role of housekeeping genes in cell and organ differentiation JF - Journal of plant research N2 - In recent years, an increasing number of mutations in what would appear to be 'housekeeping genes' have been identified as having unexpectedly specific defects in multicellular organogenesis. This is also the case for organogenesis in seed plants. Although it is not surprising that loss-of-function mutations in 'housekeeping' genes result in lethality or growth retardation, it is surprising when (1) the mutant phenotype results from the loss of function of a 'housekeeping' gene and (2) the mutant phenotype is specific. In this review, by defining housekeeping genes as those encoding proteins that work in basic metabolic and cellular functions, we discuss unexpected links between housekeeping genes and specific developmental processes. In a surprising number of cases housekeeping genes coding for enzymes or proteins with functions in basic cellular processes such as transcription, post-transcriptional modification, and translation affect plant development. KW - Development KW - Housekeeping genes KW - Post-transcriptional modification KW - RNAPII KW - Pre-mRNA splicing KW - Ribosome KW - 3 '-end processing KW - Transcription KW - Translation Y1 - 2013 U6 - https://doi.org/10.1007/s10265-012-0518-2 SN - 0918-9440 VL - 126 IS - 1 SP - 3 EP - 15 PB - Springer CY - Tokyo ER - TY - JOUR A1 - Junemann, Alexander A1 - Winterhoff, Moritz A1 - Nordholz, Benjamin A1 - Rottner, Klemens A1 - Eichinger, Ludwig A1 - Gräf, Ralph A1 - Faix, Jan T1 - ForC lacks canonical formin activity but bundles actin filaments and is required for multicellular development of Dictyostelium cells JF - European journal of cell biology N2 - Diaphanous-related formins (DRFs) drive the nucleation and elongation of linear actin filaments downstream of Rho GTPase signalling pathways. Dictyostelium formin C (ForC) resembles a DRF, except that it lacks a genuine formin homology domain 1 (FH1), raising the questions whether or not ForC can nucleate and elongate actin filaments. We found that a recombinant ForC-FH2 fragment does not nucleate actin polymerization, but moderately decreases the rate of spontaneous actin assembly and disassembly, although the barbed-end elongation rate in the presence of the formin was not markedly changed. However, the protein bound to and crosslinked actin filaments into loose bundles of mixed polarity. Furthermore, ForC is an important regulator of morphogenesis since ForC-null cells are severely impaired in development resulting in the formation of aberrant fruiting bodies. Immunoblotting revealed that ForC is absent during growth, but becomes detectable at the onset of early aggregation when cells chemotactically stream together to form a multicellular organism, and peaks around the culmination stage. Fluorescence microscopy of cells ectopically expressing a GFP-tagged, N-terminal ForC fragment showed its prominent accumulation in the leading edge, suggesting that ForC may play a role in cell migration. In agreement with its expression profile, no defects were observed in random migration of vegetative mutant cells. Notably, chemotaxis of starved cells towards a source of cAMP was severely impaired as opposed to control. This was, however, largely due to a marked developmental delay of the mutant, as evidenced by the expression profile of the early developmental marker csA. In line with this, chemotaxis was almost restored to wild type levels after prolonged starvation. Finally, we observed a complete failure of phototaxis due to abolished slug formation and a massive reduction of spores consistent with forC promoter-driven expression of beta-galactosidase in prespore cells. Together, these findings demonstrate ForC to be critically involved in signalling of the cytoskeleton during various stages of development. KW - Actin bundles KW - Cell migration KW - Chemotaxis KW - Development KW - Dictyostelium KW - Formin KW - Morphogenesis KW - Phototaxis KW - Spore formation Y1 - 2013 U6 - https://doi.org/10.1016/j.ejcb.2013.07.001 SN - 0171-9335 VL - 92 IS - 6-7 SP - 201 EP - 212 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Müller, Juliane A1 - Müller, Steffen A1 - Baur, Heiner A1 - Mayer, Frank T1 - Intra-individual gait speed variability in healthy children aged 1-15 years JF - Gait & posture N2 - Introduction: Gait speed is one of the most commonly and frequently used parameters to evaluate gait development. It is characterized by high variability when comparing different steps in children. The objective of this study was to determine intra-individual gait speed variability in children. Methods: Gait speed measurements (6-10 trials across a 3 m walkway) were performed and analyzed in 8263 children, aged 1-15 years. The coefficient of variation (CV) served as a measure for intra-individual gait speed variability measured in 6.6 +/- 1.0 trials per child. Multiple linear regression analysis was conducted to evaluate the influence of age and body height on changes in variability. Additionally, a subgroup analysis for height within the group of 6-year-old children was applied. Results: A successive reduction in gait speed variability (CV) was observed for age groups (age: 1-15 years) and body height groups (height: 0.70-1.90 m). The CV in the oldest subjects was only one third of the CV (CV 6.25 +/- 3.52%) in the youngest subjects (CV 16.58 +/- 10.01%). Up to the age of 8 years (or 1.40 m height) there was a significant reduction in CV over time, compared to a leveling off for the older (taller) children. Discussion: The straightforward approach measuring gait speed variability in repeated trials might serve as a fundamental indicator for gait development in children. Walking velocity seems to increase to age 8. Enhanced gait speed consistency of repeated trials develops up to age 15. KW - Development KW - Gait KW - Speed KW - Variability KW - Children Y1 - 2013 U6 - https://doi.org/10.1016/j.gaitpost.2013.02.011 SN - 0966-6362 SN - 1879-2219 VL - 38 IS - 4 SP - 631 EP - 636 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Mehnert, Jan A1 - Akhrif, Atae A1 - Telkemeyer, Silke A1 - Rossi, Sonja A1 - Schmitz, Christoph H. A1 - Steinbrink, Jens A1 - Wartenburger, Isabell A1 - Obrig, Hellmuth A1 - Neufang, Susanne T1 - Developmental changes in brain activation and functional connectivity during response inhibition in the early childhood brain JF - Brain and development : official journal of the Japanese Society of Child Neurology N2 - Response inhibition is an attention function which develops relatively early during childhood. Behavioral data suggest that by the age of 3, children master the basic task requirements for the assessment of response inhibition but performance improves substantially until the age of 7. The neuronal mechanisms underlying these developmental processes, however, are not well understood. In this study, we examined brain activation patterns and behavioral performance of children aged between 4 and 6 years compared to adults by applying a go/no-go paradigm during near-infrared spectroscopy (NIRS) brain imaging. We furthermore applied task-independent functional connectivity measures to the imaging data to identify maturation of intrinsic neural functional networks. We found a significant group x condition related interaction in terms of inhibition-related reduced right fronto-parietal activation in children compared to adults. In contrast, motor-related activation did not differ between age groups. Functional connectivity analysis revealed that in the children's group, short-range coherence within frontal areas was stronger, and long-range coherence between frontal and parietal areas was weaker, compared to adults. Our findings show that in children aged from 4 to 6 years fronto-parietal brain maturation plays a crucial part in the cognitive development of response inhibition. KW - Optical tomography KW - NIRS KW - Response inhibition KW - Functional connectivity KW - Development KW - Early childhood Y1 - 2013 U6 - https://doi.org/10.1016/j.braindev.2012.11.006 SN - 0387-7604 SN - 1872-7131 VL - 35 IS - 10 SP - 894 EP - 904 PB - Elsevier CY - Amsterdam ER -