TY - THES A1 - Zurell, Damaris T1 - Integrating dynamic and statistical modelling approaches in order to improve predictions for scenarios of environmental change T1 - Integration dynamischer und statistischer Modellansätze zur Verbesserung von Arealvorhersagen für Szenarien globalen Wandels N2 - Species respond to environmental change by dynamically adjusting their geographical ranges. Robust predictions of these changes are prerequisites to inform dynamic and sustainable conservation strategies. Correlative species distribution models (SDMs) relate species’ occurrence records to prevailing environmental factors to describe the environmental niche. They have been widely applied in global change context as they have comparably low data requirements and allow for rapid assessments of potential future species’ distributions. However, due to their static nature, transient responses to environmental change are essentially ignored in SDMs. Furthermore, neither dispersal nor demographic processes and biotic interactions are explicitly incorporated. Therefore, it has often been suggested to link statistical and mechanistic modelling approaches in order to make more realistic predictions of species’ distributions for scenarios of environmental change. In this thesis, I present two different ways of such linkage. (i) Mechanistic modelling can act as virtual playground for testing statistical models and allows extensive exploration of specific questions. I promote this ‘virtual ecologist’ approach as a powerful evaluation framework for testing sampling protocols, analyses and modelling tools. Also, I employ such an approach to systematically assess the effects of transient dynamics and ecological properties and processes on the prediction accuracy of SDMs for climate change projections. That way, relevant mechanisms are identified that shape the species’ response to altered environmental conditions and which should hence be considered when trying to project species’ distribution through time. (ii) I supplement SDM projections of potential future habitat for black grouse in Switzerland with an individual-based population model. By explicitly considering complex interactions between habitat availability and demographic processes, this allows for a more direct assessment of expected population response to environmental change and associated extinction risks. However, predictions were highly variable across simulations emphasising the need for principal evaluation tools like sensitivity analysis to assess uncertainty and robustness in dynamic range predictions. Furthermore, I identify data coverage of the environmental niche as a likely cause for contrasted range predictions between SDM algorithms. SDMs may fail to make reliable predictions for truncated and edge niches, meaning that portions of the niche are not represented in the data or niche edges coincide with data limits. Overall, my thesis contributes to an improved understanding of uncertainty factors in predictions of range dynamics and presents ways how to deal with these. Finally I provide preliminary guidelines for predictive modelling of dynamic species’ response to environmental change, identify key challenges for future research and discuss emerging developments. N2 - Das Vorkommen von Arten wird zunehmend bedroht durch Klima- und Landnutzungswandel. Robuste Vorhersagen der damit verbundenen Arealveränderungen sind ausschlaggebend für die Erarbeitung dynamischer und nachhaltiger Naturschutzstrategien. Habitateignungsmodelle erstellen statistische Zusammenhänge zwischen dem Vorkommen einer Art und relevanten Umweltvariablen und erlauben zügige Einschätzungen potentieller Arealveränderungen. Dabei werden jedoch transiente Dynamiken weitgehend ignoriert sowie demographische Prozesse und biotische Interaktionen. Daher wurden Vorschläge laut, diese statistischen Modelle mit mechanistischeren Ansätzen zu koppeln. In der vorliegenden Arbeit zeige ich zwei verschiedene Möglichkeiten solcher Kopplung auf. (i) Ich beschreibe den sogenannten ‚Virtuellen Ökologen’-Ansatz als mächtiges Validierungswerkzeug, in dem mechanistische Modelle virtuelle Testflächen bieten zur Erforschung verschiedener Probenahmedesigns oder statistischer Methoden sowie spezifischer Fragestellungen. Auch verwende ich diesen Ansatz, um systematisch zu untersuchen wie sich transiente Dynamiken sowie Arteigenschaften und ökologische Prozesse auf die Vorhersagegüte von Habitateignungsmodellen auswirken. So kann ich entscheidende Prozesse identifizieren welche in zukünftigen Modellen Berücksichtigung finden sollten. (ii) Darauf aufbauend koppele ich Vorhersagen von Habitateignungsmodellen mit einem individuen-basierten Populationsmodell, um die Entwicklung des Schweizer Birkhuhnbestandes unter Klimawandel vorherzusagen. Durch die explizite Berücksichtigung der Wechselwirkungen zwischen Habitat und demographischer Prozesse lassen sich direktere Aussagen über Populationsentwicklung und damit verbundener Extinktionsrisiken treffen. Allerdings führen verschiedene Simulationen auch zu hoher Variabilität zwischen Vorhersagen, was die Bedeutung von Sensitivitätsanalysen unterstreicht, um Unsicherheiten und Robustheit von Vorhersagen einzuschätzen. Außerdem identifiziere ich Restriktionen in der Datenabdeckung des Umweltraumes als möglichen Grund für kontrastierende Vorhersagen verschiedener Habitateignungsmodelle. Wenn die Nische einer Art nicht vollständig durch Daten beschrieben ist, kann dies zu unrealistischen Vorhersagen der Art-Habitat-Beziehung führen. Insgesamt trägt meine Arbeit erheblich bei zu einem besseren Verständnis der Auswirkung verschiedenster Unsicherheitsfaktoren auf Vorhersagen von Arealveränderungen und zeigt Wege auf, mit diesen umzugehen. Abschließend erstelle ich einen vorläufigen Leitfaden für Vorhersagemodelle und identifiziere Kernpunkte für weitere Forschung auf diesem Gebiet. KW - species distribution models KW - dynamic population models KW - climate change KW - prediction KW - uncertainty KW - Habitatmodelle KW - dynamische Populationsmodelle KW - Klimawandel KW - Vorhersage KW - Unsicherheit Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-56845 ER - TY - JOUR A1 - Veh, Georg A1 - Lützow, Natalie A1 - Kharlamova, Varvara A1 - Petrakov, Dmitry A1 - Hugonnet, Romain A1 - Korup, Oliver T1 - Trends, breaks, and biases in the frequency of reported glacier lake outburst floods JF - Earth's future N2 - Thousands of glacier lakes have been forming behind natural dams in high mountains following glacier retreat since the early 20th century. Some of these lakes abruptly released pulses of water and sediment with disastrous downstream consequences. Yet it remains unclear whether the reported rise of these glacier lake outburst floods (GLOFs) has been fueled by a warming atmosphere and enhanced meltwater production, or simply a growing research effort. Here we estimate trends and biases in GLOF reporting based on the largest global catalog of 1,997 dated glacier-related floods in six major mountain ranges from 1901 to 2017. We find that the positive trend in the number of reported GLOFs has decayed distinctly after a break in the 1970s, coinciding with independently detected trend changes in annual air temperatures and in the annual number of field-based glacier surveys (a proxy of scientific reporting). We observe that GLOF reports and glacier surveys decelerated, while temperature rise accelerated in the past five decades. Enhanced warming alone can thus hardly explain the annual number of reported GLOFs, suggesting that temperature-driven glacier lake formation, growth, and failure are weakly coupled, or that outbursts have been overlooked. Indeed, our analysis emphasizes a distinct geographic and temporal bias in GLOF reporting, and we project that between two to four out of five GLOFs on average might have gone unnoticed in the early to mid-20th century. We recommend that such biases should be considered, or better corrected for, when attributing the frequency of reported GLOFs to atmospheric warming. KW - glaciers KW - climate change KW - hazard KW - mountains KW - cryosphere KW - frequency Y1 - 2022 U6 - https://doi.org/10.1029/2021EF002426 SN - 2328-4277 VL - 10 IS - 3 PB - American Geophysical Union CY - Washington ER - TY - THES A1 - Veh, Georg T1 - Outburst floods from moraine-dammed lakes in the Himalayas T1 - Ausbruchsfluten von moränen-gestauten Seen im Himalaya BT - detection, frequency, and hazard BT - Erkennung, Häufigkeit, und Gefährdung N2 - The Himalayas are a region that is most dependent, but also frequently prone to hazards from changing meltwater resources. This mountain belt hosts the highest mountain peaks on earth, has the largest reserve of ice outside the polar regions, and is home to a rapidly growing population in recent decades. One source of hazard has attracted scientific research in particular in the past two decades: glacial lake outburst floods (GLOFs) occurred rarely, but mostly with fatal and catastrophic consequences for downstream communities and infrastructure. Such GLOFs can suddenly release several million cubic meters of water from naturally impounded meltwater lakes. Glacial lakes have grown in number and size by ongoing glacial mass losses in the Himalayas. Theory holds that enhanced meltwater production may increase GLOF frequency, but has never been tested so far. The key challenge to test this notion are the high altitudes of >4000 m, at which lakes occur, making field work impractical. Moreover, flood waves can attenuate rapidly in mountain channels downstream, so that many GLOFs have likely gone unnoticed in past decades. Our knowledge on GLOFs is hence likely biased towards larger, destructive cases, which challenges a detailed quantification of their frequency and their response to atmospheric warming. Robustly quantifying the magnitude and frequency of GLOFs is essential for risk assessment and management along mountain rivers, not least to implement their return periods in building design codes. Motivated by this limited knowledge of GLOF frequency and hazard, I developed an algorithm that efficiently detects GLOFs from satellite images. In essence, this algorithm classifies land cover in 30 years (~1988–2017) of continuously recorded Landsat images over the Himalayas, and calculates likelihoods for rapidly shrinking water bodies in the stack of land cover images. I visually assessed such detected tell-tale sites for sediment fans in the river channel downstream, a second key diagnostic of GLOFs. Rigorous tests and validation with known cases from roughly 10% of the Himalayas suggested that this algorithm is robust against frequent image noise, and hence capable to identify previously unknown GLOFs. Extending the search radius to the entire Himalayan mountain range revealed some 22 newly detected GLOFs. I thus more than doubled the existing GLOF count from 16 previously known cases since 1988, and found a dominant cluster of GLOFs in the Central and Eastern Himalayas (Bhutan and Eastern Nepal), compared to the rarer affected ranges in the North. Yet, the total of 38 GLOFs showed no change in the annual frequency, so that the activity of GLOFs per unit glacial lake area has decreased in the past 30 years. I discussed possible drivers for this finding, but left a further attribution to distinct GLOF-triggering mechanisms open to future research. This updated GLOF frequency was the key input for assessing GLOF hazard for the entire Himalayan mountain belt and several subregions. I used standard definitions in flood hydrology, describing hazard as the annual exceedance probability of a given flood peak discharge [m3 s-1] or larger at the breach location. I coupled the empirical frequency of GLOFs per region to simulations of physically plausible peak discharges from all existing ~5,000 lakes in the Himalayas. Using an extreme-value model, I could hence calculate flood return periods. I found that the contemporary 100-year GLOF discharge (the flood level that is reached or exceeded on average once in 100 years) is 20,600+2,200/–2,300 m3 s-1 for the entire Himalayas. Given the spatial and temporal distribution of historic GLOFs, contemporary GLOF hazard is highest in the Eastern Himalayas, and lower for regions with rarer GLOF abundance. I also calculated GLOF hazard for some 9,500 overdeepenings, which could expose and fill with water, if all Himalayan glaciers have melted eventually. Assuming that the current GLOF rate remains unchanged, the 100-year GLOF discharge could double (41,700+5,500/–4,700 m3 s-1), while the regional GLOF hazard may increase largest in the Karakoram. To conclude, these three stages–from GLOF detection, to analysing their frequency and estimating regional GLOF hazard–provide a framework for modern GLOF hazard assessment. Given the rapidly growing population, infrastructure, and hydropower projects in the Himalayas, this thesis assists in quantifying the purely climate-driven contribution to hazard and risk from GLOFs. N2 - In kaum einer anderen Region treten Abhängigkeit, Nutzen und Gefährdung von Gletscher- und Schneeschmelze so deutlich zu Tage wie im Himalaya. Naturgefahren sind hier allgegenwärtig, wobei eine die Wissenschaftler in den vergangen zwei Jahrzehnten besonders beschäftigte: Ausbrüche von Gletscherseen traten in der Vergangenheit zwar selten, aber meist mit katastrophalen Konsequenzen für die darunterliegenden Berggemeinden auf. Gletscherseeausbrüche (englisches Akronym GLOFs – glacial lake outburst floods) beschreiben den plötzlichen Ausfluss von teils mehreren Millionen Kubikmetern Wasser aus natürlich gedämmten Schmelzwasserseen. Anhaltender Gletscherrückgang in vergangenen Jahrzehnten schuf mehrere tausend Hochgebirgsseen, mit ununterbrochenem Wachstum in Anzahl und Fläche, was den Schluss auf ein möglicherweise vermehrtes Auftreten von GLOFs nahelegte. Diese suggerierte Zunahme von GLOFs konnte jedoch bisher weder getestet noch bestätigt werden, vor allem weil Seen überwiegend jenseits von 4,000 m üNN entstehen, was Feldstudien dort erschwert. Unser Wissen über GLOFs ist daher möglicherweise zu größeren, schadensreichen Ereignissen verschoben, wodurch ihre aktuelle Frequenz, und letztlich auch ihr Zusammenhang mit dem Klimawandel, nur schwer quantifizierbar sind. Mit welcher Wiederkehrrate GLOFs auftreten ist nicht zuletzt entscheidend für Risikoanalyse und -management entlang von Flüssen. Um einer Unterschätzung der tatsächlichen GLOF-Aktivität entgegenzuwirken, entwickelte ich einen Algorithmus, der GLOFs automatisch aus Satellitenbildern detektiert. Der Algorithmus greift auf etwa 30 Jahre kontinuierlich aufgenommene Landsat-Bilder (~1988-2017) zu, und berechnet letztlich die Wahrscheinlichkeit, ob Wasserkörper rasch innerhalb dieser Bildzeitreihe geschrumpft sind. An solchen Stellen suchte ich nach Sedimentverlagerungen im Gerinne flussabwärts, was ein zweites Hauptkriterium für GLOFs ist. Tests und Validierung in etwa 10% des Himalayas bestätigten, dass die Methode robust gegenüber atmosphärischen Störeffekten ist. Mit dem Ziel bisher unbekannte GLOFs zu entdecken, wendete ich daher diesen Algorithmus auf den gesamten Himalaya an. Die Suche ergab 22 neu entdeckte GLOFs, was das bestehende Inventar von 16 bekannten GLOFs seit 1988 mehr als verdoppelte. Das aktualisierte räumliche Verbreitungsmuster bestätigte einmal mehr, dass GLOFs vermehrt im Zentral- und Osthimalaya (Bhutan und Ost-Nepal) auftraten, wohingegen im Norden deutlich weniger GLOFs stattfanden. Entgegen der häufigen Annahme stellte ich jedoch fest, dass die jährliche Häufigkeit von GLOFs in den letzten drei Jahrzehnten konstant blieb. Dadurch hat das Verhältnis von GLOFs pro Einheit See(-fläche) in diesem Zeitraum sogar abgenommen. Dieses räumlich aufgelöste GLOF-Inventar bot nun die Möglichkeit, das Gefährdungspotential durch GLOFs für den gesamten Himalaya und einzelne Regionen zu berechnen. Dafür verwendete ich die in der Hochwasseranalyse gebräuchliche Definition von Gefährdung, welche die jährliche Überschreitungswahrscheinlichkeit einer gewissen Abflussmenge, in diesem Fall des Spitzenabflusses [m3 s-1] am Dammbruch, beschreibt. Das GLOF-Inventar liefert demnach die zeitliche Wahrscheinlichkeit für das Auftreten von GLOFs, während Simulationen von möglichen Spitzenabflüssen für alle heute existierenden ~5,000 Seen im Himalaya die zu erwarteten Magnituden beisteuerten. Mit Extremwertstatistik lässt sich so die mittlere Wiederkehrzeit dieser Spitzenabflüsse errechnen. Ich fand heraus, dass der 100-jährliche Abfluss (die Flutmagnitude, die im Durchschnitt einmal in 100 Jahren erreicht oder überschritten wird) derzeit bei rund 20,600+2,200/–2,300 m³ s-1 für den gesamten Himalaya liegt. Entsprechend der heutigen räumlichen und zeitlichen Verteilung von GLOFs ist die Gefährdung im Osthimalaya am höchsten und in Regionen mit wenig dokumentierten GLOFs vergleichsweise niedrig. Für ein Szenario, in dem der gesamte Himalaya in Zukunft eisfrei sein könnte, errechnete ich zudem das Gefährdungspotential von ~9,500 Übertiefungen unterhalb der heutigen Gletschern, die sich nach deren Abschmelzen mit Wasser füllen könnten. Angenommen, dass die zukünftige GLOF-Rate der heutigen entspricht, könnte der 100-jährliche Abfluss sich mehr als verdoppeln (41,700+5,500/–4,700 m3 s-1), wobei der stärkste regionale Anstieg für den Karakorum zu erwarten wäre. Zusammenfassend formen diese drei Schritte–von der Detektion von GLOFs, über die Bestimmung derer Frequenz, bis zur regionalen Abschätzung von Spitzenabflüssen–das Grundgerüst, das ein moderner Ansatz zur Gefahrenabschätzung von GLOFs benötigt. Angesichts einer wachsenden Exposition von Bevölkerung, Infrastruktur und Wasserkraftanlagen liefert diese Arbeit einen entscheidenden Beitrag, den Anteil des Klimawandels in der Gefährdung und Risiko durch GLOFs zu quantifizieren. KW - GLOF KW - frequency KW - Landsat KW - satellite images KW - classification KW - magnitude KW - Himalaya KW - Karakoram KW - climate change KW - atmospheric warming KW - glacial lakes KW - glaciers KW - meltwater KW - natural hazard KW - GLOF KW - Gletscherseeasubruch KW - Häufigkeit KW - Landsat KW - Satellitenbilder KW - Klassifikation KW - Magnitude KW - Himalaya KW - Karakorum KW - Klimawandel KW - atmosphärische Erwärmung KW - Gletscherseen KW - Gletscher KW - Schmelzwasser KW - Naturgefahr Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436071 ER - TY - THES A1 - Thonicke, Kirsten T1 - Fire disturbance and vegetation dynamics : analysis and models N2 - Untersuchungen zur Rolle natürlicher Störungen in der Vegetation bzw. in Ökosystemen zeigen, dass natürliche Störungen ein essentielles und intrinsisches Element in Ökosystemen darstellen, substanziell zur Vitalität und strukturellen Diversität der Ökosysteme beitragen und Stoffkreisläufe sowohl auf dem lokalen als auch auf dem globalen Niveau beeinflussen. Feuer als Grasland-, Busch- oder Waldbrand ist ein besonderes Störungsagens, da es sowohl durch biotische als auch abiotische Umweltfaktoren verursacht wird. Es beeinflusst biogeochemische Kreisläufe und spielt für die chemische Zusammensetzung der Atmosphäre durch Freisetzung klimarelevanter Spurengase und Aerosole aus der Verbrennung von Biomasse eine bedeutende Rolle. Dies wird auch durch die Emission von ca. 3.9 Gt Kohlenstoff pro Jahr unterstrichen, was einen großen Anteil am globalen Gesamtaufkommen ausmacht. Ein kombiniertes Modell, das die Effekte und Rückkopplungen zwischen Feuer und Vegetation beschreibt, wurde erforderlich, als Änderungen in den Feuerregimes als Folge von Änderungen in der Landnutzung und dem Landmanagement festgestellt wurden. Diese Notwendigkeit wurde noch durch die Erkenntnis unterstrichen, daß die Menge verbrennender Biomasse als ein bedeutender Kohlenstoffluß sowohl die chemische Zusammensetzung der Atmosphäre und das Klima, aber auch die Vegetationsdynamik selbst beeinflusst. Die bereits existierenden Modellansätze reichen hier jedoch nicht aus, um entsprechende Untersuchungen durchzuführen. Als eine Schlussfolgerung daraus wurde eine optimale Menge von Faktoren gefunden, die das Auftreten und die Ausbreitung des Feuers, sowie deren ökosystemare Effekte ausreichend beschreiben. Ein solches Modell sollte die Merkmale beobachteter Feuerregime simulieren können und Analysen der Interaktionen zwischen Feuer und Vegetationsdynamik unterstützen, um auch Ursachen für bestimmte Änderungen in den Feuerregimes herausfinden zu können. Insbesondere die dynamischen Verknüpfungen zwischen Vegetation, Klima und Feuerprozessen sind von Bedeutung, um dynamische Rückkopplungen und Effekte einzelner, veränderter Umweltfaktoren zu analysieren. Dadurch ergab sich die Notwendigkeit, neue Feuermodelle zu entwickeln, die die genannten Untersuchungen erlauben und das Verständnis der Rolle des Feuer in der globalen Ökologie verbessern. Als Schlussfolgerung der Dissertation wird festgestellt, dass Feuchtebedingungen, ihre Andauer über die Zeit (Länge der Feuersaison) und die Streumenge die wichtigsten Komponenten darstellen, die die Verteilung der Feuerregime global beschreiben. Werden Zeitreihen einzelner Regionen simuliert, sollten besondere Entzündungsquellen, brandkritische Klimabedingungen und die Bestandesstruktur als zusätzliche Determinanten berücksichtigt werden. Die Bestandesstruktur verändert das Niveau des Auftretens und der Ausbreitung von Feuer, beeinflusst jedoch weniger dessen interannuelle Variabilität. Das es wichtig ist, die vollständige Wirkungskette wichtiger Feuerprozesse und deren Verknüpfungen mit der Vegetationsdynamik zu berücksichtigen, wird besonders unter Klimaänderungsbedingungen deutlich. Eine länger werdende, vom Klima abhängige Feuersaison bedeutet nicht automatisch eine im gleichen Maße anwachsende Menge verbrannter Biomasse. Sie kann durch Änderungen in der Produktivität der Vegetation gepuffert oder beschleunigt werden. Sowohl durch Änderungen der Bestandesstruktur als auch durch eine erhöhte Produktivität der Vegetation können Änderungen der Feuereigenschaften noch weiter intensiviert werden und zu noch höheren, feuerbezogenen Emissionen führen. N2 - Studies of the role of disturbance in vegetation or ecosystems showed that disturbances are an essential and intrinsic element of ecosystems that contribute substantially to ecosystem health, to structural diversity of ecosystems and to nutrient cycling at the local as well as global level. Fire as a grassland, bush or forest fire is a special disturbance agent, since it is caused by biotic as well abiotic environmental factors. Fire affects biogeochemical cycles and plays an important role in atmospheric chemistry by releasing climate-sensitive trace gases and aerosols, and thus in the global carbon cycle by releasing approximately 3.9 Gt C p.a. through biomass burning. A combined model to describe effects and feedbacks between fire and vegetation became relevant as changes in fire regimes due to land use and land management were observed and the global dimension of biomass burnt as an important carbon flux to the atmosphere, its influence on atmospheric chemistry and climate as well as vegetation dynamics were emphasized. The existing modelling approaches would not allow these investigations. As a consequence, an optimal set of variables that best describes fire occurrence, fire spread and its effects in ecosystems had to be defined, which can simulate observed fire regimes and help to analyse interactions between fire and vegetation dynamics as well as to allude to the reasons behind changing fire regimes. Especially, dynamic links between vegetation, climate and fire processes are required to analyse dynamic feedbacks and effects of changes of single environmental factors. This led us to the point, where new fire models had to be developed that would allow the investigations, mentioned above, and could help to improve our understanding of the role of fire in global ecology. In conclusion of the thesis, one can state that moisture conditions, its persistence over time and fuel load are the important components that describe global fire pattern. If time series of a particular region are to be reproduced, specific ignition sources, fire-critical climate conditions and vegetation composition become additional determinants. Vegetation composition changes the level of fire occurrence and spread, but has limited impact on the inter-annual variability of fire. The importance to consider the full range of major fire processes and links to vegetation dynamics become apparent under climate change conditions. Increases in climate-dependent length of fire season does not automatically imply increases in biomass burnt, it can be buffered or accelerated by changes in vegetation productivity. Changes in vegetation composition as well as enhanced vegetation productivity can intensify changes in fire and lead to even more fire-related emissions. --- Anmerkung: Die Autorin ist Trägerin des von der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam vergebenen Michelson-Preises für die beste Promotion des Jahres 2002/2003. KW - Waldbrand KW - Feuerregime KW - Vegetationsdynamik KW - natürliche Störungen KW - Waldbrandmodellierung KW - Klimaänderung KW - forest fires KW - fire regimes KW - vegetation dynamics KW - natural disturbances KW - fire modelling KW - climate change Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000713 ER - TY - JOUR A1 - Tesselaar, Max A1 - Botzen, W. J. Wouter A1 - Haer, Toon A1 - Hudson, Paul A1 - Tiggeloven, Timothy A1 - Aerts, Jeroen C. J. H. T1 - Regional inequalities in flood insurance affordability and uptake under climate change JF - Sustainability N2 - Flood insurance coverage can enhance financial resilience of households to changing flood risk caused by climate change. However, income inequalities imply that not all households can afford flood insurance. The uptake of flood insurance in voluntary markets may decline when flood risk increases as a result of climate change. This increase in flood risk may cause substantially higher risk-based insurance premiums, reduce the willingness to purchase flood insurance, and worsen problems with the unaffordability of coverage for low-income households. A socio-economic tipping-point can occur when the functioning of a formal flood insurance system is hampered by diminishing demand for coverage. In this study, we examine whether such a tipping-point can occur in Europe for current flood insurance systems under different trends in future flood risk caused by climate and socio-economic change. This analysis gives insights into regional inequalities concerning the ability to continue to use flood insurance as an instrument to adapt to changing flood risk. For this study, we adapt the "Dynamic Integrated Flood and Insurance" (DIFI) model by integrating new flood risk simulations in the model that enable examining impacts from various scenarios of climate and socio-economic change on flood insurance premiums and consumer demand. Our results show rising unaffordability and declining demand for flood insurance across scenarios towards 2080. Under a high climate change scenario, simulations show the occurrence of a socio-economic tipping-point in several regions, where insurance uptake almost disappears. A tipping-point and related inequalities in the ability to use flood insurance as an adaptation instrument can be mitigated by introducing reforms of flood insurance arrangements. KW - climate change KW - flood risk management KW - insurance KW - socio-economic KW - tipping-point KW - adaptation KW - partial equilibrium modeling Y1 - 2020 U6 - https://doi.org/10.3390/su12208734 SN - 2071-1050 VL - 12 IS - 20 PB - MDPI CY - Basel ER - TY - THES A1 - Strauß, Jens T1 - Organic carbon in ice-rich permafrost T1 - Organischer Kohlenstoff in eisreichen Permafrostablagerungen BT - characteristics, quantity, and availability BT - stoffliche Charakteristik, Bilanzierung und Verfügbarkeit N2 - Permafrost, defined as ground that is frozen for at least two consecutive years, is a distinct feature of the terrestrial unglaciated Arctic. It covers approximately one quarter of the land area of the Northern Hemisphere (23,000,000 km²). Arctic landscapes, especially those underlain by permafrost, are threatened by climate warming and may degrade in different ways, including active layer deepening, thermal erosion, and development of rapid thaw features. In Siberian and Alaskan late Pleistocene ice-rich Yedoma permafrost, rapid and deep thaw processes (called thermokarst) can mobilize deep organic carbon (below 3 m depth) by surface subsidence due to loss of ground ice. Increased permafrost thaw could cause a feedback loop of global significance if its stored frozen organic carbon is reintroduced into the active carbon cycle as greenhouse gases, which accelerate warming and inducing more permafrost thaw and carbon release. To assess this concern, the major objective of the thesis was to enhance the understanding of the origin of Yedoma as well as to assess the associated organic carbon pool size and carbon quality (concerning degradability). The key research questions were: - How did Yedoma deposits accumulate? - How much organic carbon is stored in the Yedoma region? - What is the susceptibility of the Yedoma region's carbon for future decomposition? To address these three research questions, an interdisciplinary approach, including detailed field studies and sampling in Siberia and Alaska as well as methods of sedimentology, organic biogeochemistry, remote sensing, statistical analyses, and computational modeling were applied. To provide a panarctic context, this thesis additionally includes results both from a newly compiled northern circumpolar carbon database and from a model assessment of carbon fluxes in a warming Arctic. The Yedoma samples show a homogeneous grain-size composition. All samples were poorly sorted with a multi-modal grain-size distribution, indicating various (re-) transport processes. This contradicts the popular pure loess deposition hypothesis for the origin of Yedoma permafrost. The absence of large-scale grinding processes via glaciers and ice sheets in northeast Siberian lowlands, processes which are necessary to create loess as material source, suggests the polygenetic origin of Yedoma deposits. Based on the largest available data set of the key parameters, including organic carbon content, bulk density, ground ice content, and deposit volume (thickness and coverage) from Siberian and Alaskan study sites, this thesis further shows that deep frozen organic carbon in the Yedoma region consists of two distinct major reservoirs, Yedoma deposits and thermokarst deposits (formed in thaw-lake basins). Yedoma deposits contain ~80 Gt and thermokarst deposits ~130 Gt organic carbon, or a total of ~210 Gt. Depending on the approach used for calculating uncertainty, the range for the total Yedoma region carbon store is ±75 % and ±20 % for conservative single and multiple bootstrapping calculations, respectively. Despite the fact that these findings reduce the Yedoma region carbon pool by nearly a factor of two compared to previous estimates, this frozen organic carbon is still capable of inducing a permafrost carbon feedback to climate warming. The complete northern circumpolar permafrost region contains between 1100 and 1500 Gt organic carbon, of which ~60 % is perennially frozen and decoupled from the short-term carbon cycle. When thawed and reintroduced into the active carbon cycle, the organic matter qualities become relevant. Furthermore, results from investigations into Yedoma and thermokarst organic matter quality studies showed that Yedoma and thermokarst organic matter exhibit no depth-dependent quality trend. This is evidence that after freezing, the ancient organic matter is preserved in a state of constant quality. The applied alkane and fatty-acid-based biomarker proxies including the carbon-preference and the higher-land-plant-fatty-acid indices show a broad range of organic matter quality and thus no significantly different qualities of the organic matter stored in thermokarst deposits compared to Yedoma deposits. This lack of quality differences shows that the organic matter biodegradability depends on different decomposition trajectories and the previous decomposition/incorporation history. Finally, the fate of the organic matter has been assessed by implementing deep carbon pools and thermokarst processes in a permafrost carbon model. Under various warming scenarios for the northern circumpolar permafrost region, model results show a carbon release from permafrost regions of up to ~140 Gt and ~310 Gt by the years 2100 and 2300, respectively. The additional warming caused by the carbon release from newly-thawed permafrost contributes 0.03 to 0.14°C by the year 2100. The model simulations predict that a further increase by the 23rd century will add 0.4°C to global mean surface air temperatures. In conclusion, Yedoma deposit formation during the late Pleistocene was dominated by water-related (alluvial/fluvial/lacustrine) as well as aeolian processes under periglacial conditions. The circumarctic permafrost region, including the Yedoma region, contains a substantial amount of currently frozen organic carbon. The carbon of the Yedoma region is well-preserved and therefore available for decomposition after thaw. A missing quality-depth trend shows that permafrost preserves the quality of ancient organic matter. When the organic matter is mobilized by deep degradation processes, the northern permafrost region may add up to 0.4°C to the global warming by the year 2300. N2 - Permafrost, definiert als mehr als zwei aufeinander folgende Jahre gefrorenes Bodenmaterial, ist eines der prägenden Merkmale der unvergletscherten arktischen Landgebiete. Verursacht durch extrem kalte Wintertemperaturen und geringe Schneebedeckung nimmt das Permafrost-Verbreitungsgebiet mit ~23.000.000 km² rund ein Viertel der Landfläche der Nordhemisphäre ein. Von Permafrost unterlagerte arktische Landschaften sind besonders anfällig hinsichtlich einer Erwärmung des Klimas. Verglichen mit der globalen Mitteltemperatur prognostizieren Klimamodelle für die Arktis einen doppelt so starken Anstieg der Temperatur. In einer sich erwärmenden Arktis bewirken Störungen des thermisch-hydrologischen Gleichgewichts eine Degradation von Permafrost und Veränderungen des Oberflächenreliefs. Diese Störungen können zum Beispiel zu einer Vertiefung der saisonalen Auftauschicht, zu thermisch bedingter Erosion sowie zu schneller Oberflächenabsenkung und Thermokarst führen. Im Verbreitungsgebiet der spätpleistozänen eisreichen Permafrost-Ablagerungen Sibiriens und Alaskas, bezeichnet als Yedoma, können Thermokarstprozesse auch mehr als 3 m tiefe organischen Kohlenstoffspeicher verfügbar machen, wenn durch schmelzendes Grundeis und Schmelzwasserdrainage die Oberfläche abgesenkt wird. So kann das Tauen von Permafrost eine globale Bedeutung entwickeln, indem vorher eingefrorener Kohlenstoff wieder dem aktiven Kohlenstoffkreislauf zugeführt wird. Dies kann durch Treibhausgasfreisetzung aus Permafrost zu einer sich selbst verstärkenden weiteren Erwärmung und somit zu fortschreitendem Tauen mit weiterer Kohlenstofffreisetzung führen. Diesen Prozess nennt man Permafrost-Kohlenstoff Rückkopplung. Um das Verständnis der Permafrostkohlenstoffdynamik grundlegend zu verbessern, wurde in dieser Doktorarbeit die Entstehung der Yedoma-Ablagerungen eingeschlossen des darin - Wie wurden die Yedoma-Sedimente abgelagert? - Wie viel Kohlenstoff ist in der Yedoma Region gespeichert? - Wie ist die Anfälligkeit dieses Kohlenstoffs für eine Degradation in der Zukunft? Um die oben genannten drei Forschungsfragen zu beantworten, wurde ein interdisziplinärer Forschungsansatz gewählt. In Sibirien und Alaska wurden detaillierte Felduntersuchungen durchgeführt und Methoden der Sedimentologie, der organischen Biogeochemie, der Fernerkundung sowie der statistischen Analyse und computergestützten Modellierung angewendet. Um diese Ergebnisse in den panarktische Kontext zu setzen, enthält diese Doktorarbeit ebenfalls Ergebnisse einer Studie, welche auf Grundlage einer neu zusammengestellten Datenbank den gesamten Kohlenstoff des arktischen Permafrosts abschätzt. Eine Modellierungsstudie ergänzt die Arbeit bezüglich einer Abschätzung der Kohlenstoffflüsse der Permafrostregion und deren Einfluss auf die globale Erwärmung. Die Ergebnisse zur Yedoma-Entstehung zeigen, dass die Korngrößenverteilungen dieser Ablagerungen, tiefenabhängig betrachtet, sehr homogen sind. Alle gemessenen Korngrößenverteilungen sind schlecht sortiert. Dies deutet auf eine Vielzahl von Transportprozessen hin und widerspricht der populären Hypothese einer reinen Löß-Ablagerung. Interpretiert im Kontext mit der Abwesenheit von Gletschern sowie Eisschilden, als Ausgangsgebiete von Löß-Ablagerungen, in den sibirischen Tiefländern des Spätpleistozäns, zeigt diese Arbeit, dass Yedoma-Ablagerungen polygenetischen Ursprungs sind. Basierend auf dem größten verfügbaren Datensatz der Schlüsselparameter Kohlenstoffgehalt, Lagerungsdichte, Grundeis und Volumen der Ablagerungen von über 20 Untersuchungsgebieten in Sibirien und Alaska zeigt diese Arbeit mit Yedoma- und Thermokarstablagerungen zwei wesentliche Kohlenstoffspeicher der Yedoma Region auf. Yedoma-Ablagerungen enthalten ~80 Gt und Thermokarstablagerungen ~130 Gt organischen Kohlenstoffs, was einer Gesamtmenge von ~210 Gt organischen Kohlenstoffs entspricht. Abhängig vom gewählten Ansatz der Fehlerberechnung liegt der Unsicherheitsbereich dieser Quantitätsabschätzung bei ±75 % (einfaches Bootstrapping) oder ±20 % (wiederholtes Bootstrapping). Obwohl diese Zahlen die bisherigen Berechnungen des Yedoma-Region-Kohlenstoffspeichers vorhergehender Studien halbieren, stellen 210 Gt organischen Kohlenstoffs noch immer einen großen Kohlenstoffspeicher dar, der eine positive Rückkopplung zur globalen Klimaerwärmung bewirken könnte. Die gesamte Permafrostregion beinhaltet zwischen 1100 und 1500 Gt Kohlenstoff, wovon ~60 % dauerhaft gefroren und somit dem derzeitigen Kohlenstoffkreislauf entzogen sind. Wenn dieser Kohlenstoff freigesetzt wird, ist ein weiterer Faktor, die Kohlenstoffqualität, relevant. Die Untersuchungen zur Kohlenstoffqualität zeigen keinen tiefenabhängigen Trend in Yedoma- und Thermokarstablagerungen. Dies belegt, dass nach dem Einfrieren die fossile organische Substanz konserviert wurde. Die genutzten Biomarkerdaten, z.B. der 'carbon preference' Index und der 'higher land plant fatty acid' Index zeigen sowohl für Yedoma- als auch für Thermokarstablagerungen keine signifikanten Unterschiede der Kohlenstoffqualität. Das bedeutet, dass der Kohlenstoffabbau nach dem Auftauen von unterschiedlichen Faktoren abhängig ist. Dazu gehören verschiedene Abbauwege oder schon vor dem Einfrieren geschehener Abbau. Um die Bedeutung des aufgetauten Kohlenstoffs abzuschätzen, wurden Thermokarstprozesse in ein Permafrost-Kohlenstoff-Modell einbezogen. Unter Berücksichtigung verschiedener Erwärmungsszenarien könnte die zirkumarktische Permafrostregion bis zum Jahr 2100 ~140 Gt Kohlenstoff und bis 2300 ~310 Gt in die Atmosphäre freisetzen. Dies entspricht einer Erwärmung der mittleren globalen Oberflächentemperatur von ~0,03 bis ~0,14°C bis 2100 und bis zu ~0,4°C bis 2300. Zusammenfassend stellt diese Dissertation heraus, dass die Yedoma-Ablagerungen während des Spätpleistozäns durch eine Kombination verschiedener aquatischer (alluviale, fluviale, lakustrine) sowie äolische Prozesse entstanden sind. Die zirkumarktische Region, inklusive der Yedoma Region, beinhaltet eine erhebliche Menge an derzeit eingefrorenem organischen Kohlenstoffs. Dieser Kohlenstoff ist gut erhalten und damit nach dem Auftauen für den mikrobiellen Abbau verfügbar. Eine fehlende Tiefenabhängigkeit der Kohlenstoffqualität zeigt, dass Permafrost die Qualität zum Einfrierzeitpunkt bewahrt. Wenn auch der tiefliegende organische Kohlenstoff durch Thermokarstprozesse verfügbar gemacht wird, kann die Permafrostregion bis zum Jahr 2300 bis zu 0,4°C zur mittleren globalen Oberflächentemperatur beitragen. KW - permafrost KW - Arctic KW - climate change KW - vulnerability KW - Dauerfrostboden KW - Arktis KW - Klimawandel KW - Vulnerabilität Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-75236 ER - TY - GEN A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Pestryakova, Luidmila Agafyevna A1 - Epp, Laura Saskia A1 - Herzschuh, Ulrike T1 - Phylogenetic diversity and environment form assembly rules for Arctic diatom genera BT - a study on recent and ancient sedimentary DNA T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Aim This study investigates taxonomic and phylogenetic diversity in diatom genera to evaluate assembly rules for eukaryotic microbes across the Siberian tree line. We first analysed how phylogenetic distance relates to taxonomic richness and turnover. Second, we used relatedness indices to evaluate if environmental filtering or competition influences the assemblies in space and through time. Third, we used distance-based ordination to test which environmental variables shape diatom turnover. Location Yakutia and Taymyria, Russia: we sampled 78 surface sediments and a sediment core, extending to 7,000 years before present, to capture the forest-tundra transition in space and time respectively. Taxon Arctic freshwater diatoms. Methods We applied metabarcoding to retrieve diatom diversity from surface and core sedimentary DNA. The taxonomic assignment binned sequence types (lineages) into genera and created taxonomic (abundance of lineages within different genera) and phylogenetic datasets (phylogenetic distances of lineages within different genera). Results Contrary to our expectations, we find a unimodal relationship between phylogenetic distance and richness in diatom genera. We discern a positive relationship between phylogenetic distance and taxonomic turnover in spatially and temporally distributed diatom genera. Furthermore, we reveal positive relatedness indices in diatom genera across the spatial environmental gradient and predominantly in time slices at a single location, with very few exceptions assuming effects of competition. Distance-based ordination of taxonomic and phylogenetic turnover indicates that lake environment variables, like HCO3- and water depth, largely explain diatom turnover. Main conclusion Phylogenetic and abiotic assembly rules are important in understanding the regional assembly of diatom genera across lakes in the Siberian tree line ecotone. Using a space-time approach we are able to exclude the influence of geography and elucidate that lake environmental variables primarily shape the assemblies. We conclude that some diatom genera have greater capabilities to adapt to environmental changes, whereas others will be putatively replaced or lost due to the displacement of the Arctic tundra biome under recent global warming. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1442 KW - ancient sedimentary DNA KW - Arctic lakes KW - assembly rules KW - climate change KW - diatoms KW - environmental filtering KW - phylogenetic diversity KW - Siberian tree line Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515485 SN - 1866-8372 IS - 5 ER - TY - JOUR A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Pestryakova, Luidmila Agafyevna A1 - Epp, Laura Saskia A1 - Herzschuh, Ulrike T1 - Phylogenetic diversity and environment form assembly rules for Arctic diatom genera BT - a study on recent and ancient sedimentary DNA JF - Journal of Biogeography N2 - Aim This study investigates taxonomic and phylogenetic diversity in diatom genera to evaluate assembly rules for eukaryotic microbes across the Siberian tree line. We first analysed how phylogenetic distance relates to taxonomic richness and turnover. Second, we used relatedness indices to evaluate if environmental filtering or competition influences the assemblies in space and through time. Third, we used distance-based ordination to test which environmental variables shape diatom turnover. Location Yakutia and Taymyria, Russia: we sampled 78 surface sediments and a sediment core, extending to 7,000 years before present, to capture the forest-tundra transition in space and time respectively. Taxon Arctic freshwater diatoms. Methods We applied metabarcoding to retrieve diatom diversity from surface and core sedimentary DNA. The taxonomic assignment binned sequence types (lineages) into genera and created taxonomic (abundance of lineages within different genera) and phylogenetic datasets (phylogenetic distances of lineages within different genera). Results Contrary to our expectations, we find a unimodal relationship between phylogenetic distance and richness in diatom genera. We discern a positive relationship between phylogenetic distance and taxonomic turnover in spatially and temporally distributed diatom genera. Furthermore, we reveal positive relatedness indices in diatom genera across the spatial environmental gradient and predominantly in time slices at a single location, with very few exceptions assuming effects of competition. Distance-based ordination of taxonomic and phylogenetic turnover indicates that lake environment variables, like HCO3- and water depth, largely explain diatom turnover. Main conclusion Phylogenetic and abiotic assembly rules are important in understanding the regional assembly of diatom genera across lakes in the Siberian tree line ecotone. Using a space-time approach we are able to exclude the influence of geography and elucidate that lake environmental variables primarily shape the assemblies. We conclude that some diatom genera have greater capabilities to adapt to environmental changes, whereas others will be putatively replaced or lost due to the displacement of the Arctic tundra biome under recent global warming. KW - ancient sedimentary DNA KW - Arctic lakes KW - assembly rules KW - climate change KW - diatoms KW - environmental filtering KW - phylogenetic diversity KW - Siberian tree line Y1 - 2020 U6 - https://doi.org/10.1111/jbi.13786 SN - 0305-0270 SN - 1365-2699 VL - 47 IS - 5 SP - 1166 EP - 1179 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Skålevåg, Amalie A1 - Vormoor, Klaus Josef T1 - Daily streamflow trends in Western versus Eastern Norway and their attribution to hydro-meteorological drivers JF - Hydrological processes : an international journal N2 - Regional warming and modifications in precipitation regimes has large impacts on streamflow in Norway, where both rainfall and snowmelt are important runoff generating processes. Hydrological impacts of recent changes in climate are usually investigated by trend analyses applied on annual, seasonal, or monthly time series. None of these detect sub-seasonal changes and their underlying causes. This study investigated sub-seasonal changes in streamflow, rainfall, and snowmelt in 61 and 51 catchments respectively in Western (Vestlandet) and Eastern (ostlandet) Norway by applying the Mann-Kendall test and Theil-Sen estimator on 10-day moving averaged daily time series over a 30-year period (1983-2012). The relative contribution of rainfall versus snowmelt to daily streamflow and the changes therein have also been estimated to identify the changing relevance of these driving processes over the same period. Detected changes in 10-day moving averaged daily streamflow were finally attributed to changes in the most important hydro-meteorological drivers using multiple-regression models with increasing complexity. Earlier spring flow timing in both regions occur due to earlier snowmelt. ostlandet shows increased summer streamflow in catchments up to 1100 m a.s.l. and slightly increased winter streamflow in about 50% of the catchments. Trend patterns in Vestlandet are less coherent. The importance of rainfall has increased in both regions. Attribution of trends reveals that changes in rainfall and snowmelt can explain some streamflow changes where they are dominant processes (e.g., spring snowmelt in ostlandet and autumn rainfall in Vestlandet). Overall, the detected streamflow changes can be best explained by adding temperature trends as an additional predictor, indicating the relevance of additional driving processes such as increased glacier melt and evapotranspiration. KW - attribution KW - climate change KW - hydrological change KW - hydro-meteorological KW - driver KW - streamflow trend KW - trend analysis Y1 - 2021 U6 - https://doi.org/10.1002/hyp.14329 SN - 0885-6087 SN - 1099-1085 VL - 35 IS - 8 PB - Wiley CY - New York ER - TY - THES A1 - Schmidt, Lena Katharina T1 - Altered hydrological and sediment dynamics in high-alpine areas – Exploring the potential of machine-learning for estimating past and future changes N2 - Climate change fundamentally transforms glaciated high-alpine regions, with well-known cryospheric and hydrological implications, such as accelerating glacier retreat, transiently increased runoff, longer snow-free periods and more frequent and intense summer rainstorms. These changes affect the availability and transport of sediments in high alpine areas by altering the interaction and intensity of different erosion processes and catchment properties. Gaining insight into the future alterations in suspended sediment transport by high alpine streams is crucial, given its wide-ranging implications, e.g. for flood damage potential, flood hazard in downstream river reaches, hydropower production, riverine ecology and water quality. However, the current understanding of how climate change will impact suspended sediment dynamics in these high alpine regions is limited. For one, this is due to the scarcity of measurement time series that are long enough to e.g. infer trends. On the other hand, it is difficult – if not impossible – to develop process-based models, due to the complexity and multitude of processes involved in high alpine sediment dynamics. Therefore, knowledge has so far been confined to conceptual models (which do not facilitate deriving concrete timings or magnitudes for individual catchments) or qualitative estimates (‘higher export in warmer years’) that may not be able to capture decreases in sediment export. Recently, machine-learning approaches have gained in popularity for modeling sediment dynamics, since their black box nature tailors them to the problem at hand, i.e. relatively well-understood input and output data, linked by very complex processes. Therefore, the overarching aim of this thesis is to estimate sediment export from the high alpine Ötztal valley in Tyrol, Austria, over decadal timescales in the past and future – i.e. timescales relevant to anthropogenic climate change. This is achieved by informing, extending, evaluating and applying a quantile regression forest (QRF) approach, i.e. a nonparametric, multivariate machine-learning technique based on random forest. The first study included in this thesis aimed to understand present sediment dynamics, i.e. in the period with available measurements (up to 15 years). To inform the modeling setup for the two subsequent studies, this study identified the most important predictors, areas within the catchments and time periods. To that end, water and sediment yields from three nested gauges in the upper Ötztal, Vent, Sölden and Tumpen (98 to almost 800 km² catchment area, 930 to 3772 m a.s.l.) were analyzed for their distribution in space, their seasonality and spatial differences therein, and the relative importance of short-term events. The findings suggest that the areas situated above 2500 m a.s.l., containing glacier tongues and recently deglaciated areas, play a pivotal role in sediment generation across all sub-catchments. In contrast, precipitation events were relatively unimportant (on average, 21 % of annual sediment yield was associated to precipitation events). Thus, the second and third study focused on the Vent catchment and its sub-catchment above gauge Vernagt (11.4 and 98 km², 1891 to 3772 m a.s.l.), due to their higher share of areas above 2500 m. Additionally, they included discharge, precipitation and air temperature (as well as their antecedent conditions) as predictors. The second study aimed to estimate sediment export since the 1960s/70s at gauges Vent and Vernagt. This was facilitated by the availability of long records of the predictors, discharge, precipitation and air temperature, and shorter records (four and 15 years) of turbidity-derived sediment concentrations at the two gauges. The third study aimed to estimate future sediment export until 2100, by applying the QRF models developed in the second study to pre-existing precipitation and temperature projections (EURO-CORDEX) and discharge projections (physically-based hydroclimatological and snow model AMUNDSEN) for the three representative concentration pathways RCP2.6, RCP4.5 and RCP8.5. The combined results of the second and third study show overall increasing sediment export in the past and decreasing export in the future. This suggests that peak sediment is underway or has already passed – unless precipitation changes unfold differently than represented in the projections or changes in the catchment erodibility prevail and override these trends. Despite the overall future decrease, very high sediment export is possible in response to precipitation events. This two-fold development has important implications for managing sediment, flood hazard and riverine ecology. This thesis shows that QRF can be a very useful tool to model sediment export in high-alpine areas. Several validations in the second study showed good performance of QRF and its superiority to traditional sediment rating curves – especially in periods that contained high sediment export events, which points to its ability to deal with threshold effects. A technical limitation of QRF is the inability to extrapolate beyond the range of values represented in the training data. We assessed the number and severity of such out-of-observation-range (OOOR) days in both studies, which showed that there were few OOOR days in the second study and that uncertainties associated with OOOR days were small before 2070 in the third study. As the pre-processed data and model code have been made publically available, future studies can easily test further approaches or apply QRF to further catchments. N2 - Der Klimawandel verändert vergletscherte Hochgebirgsregionen grundlegend, mit wohlbekannten Auswirkungen auf Kryosphäre und Hydrologie, wie beschleunigtem Gletscherrückgang, vorübergehend erhöhtem Abfluss, längeren schneefreien Perioden und häufigeren und intensiveren sommerlichen Starkniederschlägen. Diese Veränderungen wirken sich auf die Verfügbarkeit und den Transport von Sedimenten in hochalpinen Gebieten aus, indem sie die Interaktion und Intensität verschiedener Erosionsprozesse und Einzugsgebietseigenschaften verändern. Eine Abschätzung der zukünftigen Veränderungen des Schwebstofftransports in hochalpinen Bächen ist von entscheidender Bedeutung, da sie weitreichende Auswirkungen haben, z. B. auf das Hochwasserschadenspotenzial, die Hochwassergefahr in den Unterläufen, sowie Wasserkraftproduktion, aquatische Ökosysteme und Wasserqualität. Das derzeitige Verständnis der Auswirkungen des Klimawandels auf die Schwebstoffdynamik in diesen hochalpinen Regionen ist jedoch begrenzt. Dies liegt zum einen daran, dass es kaum ausreichend lange Messzeitreihen gibt, um z.B. Trends ableiten zu können. Zum anderen ist es aufgrund der Komplexität und der Vielzahl der Prozesse, die an der hochalpinen Sedimentdynamik beteiligt sind, schwierig - wenn nicht gar unmöglich - prozessbasierte Modelle zu entwickeln. Daher beschränkte sich das Wissen bisher auf konzeptionelle Modelle (die es nicht ermöglichen, konkrete Zeitpunkte oder Größenordnungen für einzelne Einzugsgebiete abzuleiten) oder qualitative Schätzungen ("höherer Sedimentaustrag in wärmeren Jahren"), die möglicherweise nicht in der Lage sind, Rückgänge im Sedimentaustrag abzubilden. In jüngster Zeit haben Ansätze des maschinellen Lernens für die Modellierung der Sedimentdynamik an Popularität gewonnen, da sie aufgrund ihres Black-Box-Charakters auf das vorliegende Problem zugeschnitten sind, d. h. auf relativ gut verstandene Eingangs- und Ausgangsdaten, die durch sehr komplexe Prozesse verknüpft sind. Das übergeordnete Ziel dieser Arbeit ist daher die Abschätzung des Sedimentaustrags am Beispiel des hochalpinen Ötztals in Tirol, Österreich, auf dekadischen Zeitskalen in der Vergangenheit und Zukunft – also Zeitskalen, die für den anthropogenen Klimawandel relevant sind. Dazu wird ein Quantile Regression Forest (QRF)-Ansatz, d.h. ein nichtparametrisches, multivariates maschinelles Lernverfahren auf der Basis von Random Forest, erweitert, evaluiert und angewendet. Die erste Studie im Rahmen dieser Arbeit zielte darauf ab, die "gegenwärtige" Sedimentdynamik zu verstehen, d. h. in dem Zeitraum, für den Messungen vorliegen (bis zu 15 Jahre). Um die Modellierung für die beiden folgenden Studien zu ermöglichen, wurden in dieser Studie die wichtigsten Prädiktoren, Teilgebiete des Untersuchungsgebiets und Zeiträume ermittelt. Zu diesem Zweck wurden die Wasser- und Sedimenterträge von drei verschachtelten Pegeln im oberen Ötztal, Vent, Sölden und Tumpen (98 bis fast 800 km² Einzugsgebiet, 930 bis 3772 m ü.d.M.), auf ihre räumliche Verteilung, ihre Saisonalität und deren räumlichen Unterschiede, sowie die relative Bedeutung von Niederschlagsereignissen hin untersucht. Die Ergebnisse deuten darauf hin, dass die Gebiete oberhalb von 2500 m ü. M., in denen sich Gletscherzungen und kürzlich entgletscherte Gebiete befinden, eine zentrale Rolle in der Sedimentdynamik in allen Teileinzugsgebieten spielen. Im Gegensatz dazu waren Niederschlagsereignisse relativ unbedeutend (im Durchschnitt wurden 21 % des jährlichen Austrags mit Niederschlagsereignissen in Verbindung gebracht). Daher konzentrierten sich die zweite und dritte Studie auf das Vent-Einzugsgebiet und sein Teileinzugsgebiet oberhalb des Pegels Vernagt (11,4 und 98 km², 1891 bis 3772 m ü. M.), da sie einen höheren Anteil an Gebieten oberhalb von 2500 m aufweisen. Außerdem wurden Abfluss, Niederschlag und Lufttemperatur (sowie deren Vorbedingungen) als Prädiktoren einbezogen. Die zweite Studie zielte darauf ab, den Sedimentexport seit den 1960er/70er Jahren an den Pegeln Vent und Vernagt abzuschätzen. Dies wurde durch die Verfügbarkeit langer Aufzeichnungen der Prädiktoren Abfluss, Niederschlag und Lufttemperatur sowie kürzerer Aufzeichnungen (vier und 15 Jahre) von aus Trübungsmessungen abgeleiteten Sedimentkonzentrationen an den beiden Pegeln ermöglicht. Die dritte Studie zielte darauf ab, den zukünftigen Sedimentexport bis zum Jahr 2100 abzuschätzen, indem die in der zweiten Studie entwickelten QRF-Modelle auf bereits existierende Niederschlags- und Temperaturprojektionen (EURO-CORDEX) und Abflussprojektionen (des physikalisch basierten hydroklimatologischen und Schneemodells AMUNDSEN) in den drei repräsentativen Konzentrationspfaden RCP2.6, RCP4.5 und RCP8.5 angewendet wurden. Die kombinierten Ergebnisse der zweiten und dritten Studie legen nahe, dass der Sedimentexport in der Vergangenheit insgesamt zugenommen hat und in der Zukunft abnehmen wird. Dies deutet darauf hin, dass der Höhepunkt des Sedimenteintrags erreicht ist oder bereits überschritten wurde - es sei denn, die Niederschlagsveränderungen entwickeln sich anders, als es in den Projektionen dargestellt ist, oder Veränderungen in der Erodierbarkeit des Einzugsgebiets setzen sich durch. Trotz des allgemeinen Rückgangs in der Zukunft sind sehr hohe Sedimentausträge als Reaktion auf Niederschlagsereignisse möglich. Diese zweifältige Entwicklung hat wichtige Auswirkungen auf das Sedimentmanagement, die Hochwassergefahr und die Flussökologie. Diese Arbeit zeigt, dass QRF ein sehr nützliches Instrument zur Modellierung des Sedimentexports in hochalpinen Gebieten sein kann. Mehrere Validierungen in der zweiten Studie zeigten eine gute Modell-Performance und die Überlegenheit gegenüber traditionellen Sediment-Abfluss-Beziehungen – insbesondere in Zeiträumen, in denen es zu einem hohen Sedimentexport kam, was auf die Fähigkeit von QRF hinweist, mit Schwelleneffekten umzugehen. Eine technische Einschränkung von QRF ist die Unfähigkeit, über den Bereich der in den Trainingsdaten dargestellten Werte hinaus zu extrapolieren. Die Anzahl und den Schweregrad an solchen Tagen, in denen der Wertebereich der Trainingsdaten überschritten wurde, wurde in beiden Studien untersucht. Dabei zeigte sich, dass es in der zweiten Studie nur wenige solcher Tage gab und dass die mit den Überschreitungen verbundenen Unsicherheiten in der dritten Studie vor 2070 gering waren. Da die vorverarbeiteten Daten und der Modellcode öffentlich zugänglich gemacht wurden, können künftige Studien darauf aufbauend weitere Ansätze testen oder QRF auf weitere Einzugsgebiete anwenden. KW - suspended sediment KW - glacier melt KW - climate change KW - natural hazards KW - hydrology KW - geomorphology KW - Klimawandel KW - Geomorphologie KW - Gletscherschmelze KW - Hydrologie KW - Naturgefahren KW - suspendiertes Sediment Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-623302 ER - TY - THES A1 - Schibalski, Anett T1 - Statistical and process-based models for understanding species distributions in changing environments T1 - Statistische und prozessbasierte Modelle für die Verbreitung von Arten unter Umweltänderungen N2 - Understanding the distribution of species is fundamental for biodiversity conservation, ecosystem management, and increasingly also for climate impact assessment. The presence of a species in a given site depends on physiological limitations (abiotic factors), interactions with other species (biotic factors), migratory or dispersal processes (site accessibility) as well as the continuing effects of past events, e.g. disturbances (site legacy). Existing approaches to predict species distributions either (i) correlate observed species occurrences with environmental variables describing abiotic limitations, thus ignoring biotic interactions, dispersal and legacy effects (statistical species distribution model, SDM); or (ii) mechanistically model the variety of processes determining species distributions (process-based model, PBM). SDMs are widely used due to their easy applicability and ability to handle varied data qualities. But they fail to reproduce the dynamic response of species distributions to changing conditions. PBMs are expected to be superior in this respect, but they need very specific data unavailable for many species, and are often more complex and require more computational effort. More recently, hybrid models link the two approaches to combine their respective strengths. In this thesis, I apply and compare statistical and process-based approaches to predict species distributions, and I discuss their respective limitations, specifically for applications in changing environments. Detailed analyses of SDMs for boreal tree species in Finland reveal that nonclimatic predictors - edaphic properties and biotic interactions - are important limitations at the treeline, contesting the assumption of unrestricted, climatically induced range expansion. While the estimated SDMs are successful within their training data range, spatial and temporal model transfer fails. Mapping and comparing sampled predictor space among data subsets identifies spurious extrapolation as the plausible explanation for limited model transferability. Using these findings, I analyze the limited success of an established PBM (LPJ-GUESS) applied to the same problem. Examination of process representation and parameterization in the PBM identifies implemented processes to adjust (competition between species, disturbance) and missing processes that are crucial in boreal forests (nutrient limitation, forest management). Based on climatic correlations shifting over time, I stress the restricted temporal transferability of bioclimatic limits used in LPJ-GUESS and similar PBMs. By critically assessing the performance of SDM and PBM in this application, I demonstrate the importance of understanding the limitations of the applied methods. As a potential solution, I add a novel approach to the repertoire of existing hybrid models. By simulation experiments with an individual-based PBM which reproduces community dynamics resulting from biotic factors, dispersal and legacy effects, I assess the resilience of coastal vegetation to abrupt hydrological changes. According to the results of the resilience analysis, I then modify temporal SDM predictions, thereby transferring relevant process detail from PBM to SDM. The direction of knowledge transfer from PBM to SDM avoids disadvantages of current hybrid models and increases the applicability of the resulting model in long-term, large-scale applications. A further advantage of the proposed framework is its flexibility, as it is readily extended to other model types, disturbance definitions and response characteristics. Concluding, I argue that we already have a diverse range of promising modelling tools at hand, which can be refined further. But most importantly, they need to be applied more thoughtfully. Bearing their limitations in mind, combining their strengths and openly reporting underlying assumptions and uncertainties is the way forward. N2 - Wissen über die Verbreitung von Arten ist fundamental für die Erhaltung von Biodiversität, das Management von Ökosystemen und zunehmend auch für die Abschätzung der Folgen des Klimawandels. Das Vorkommen einer Art an einem Standort hängt ab von: physiologischen Grenzwerten (abiotischen Faktoren), Interaktionen mit anderen Arten (biotischen Faktoren), Ausbreitungsprozessen (Erreichbarkeit des Standorts) sowie Nachwirkungen vergangener Ereignisse, z.B. Störungen (Standortgeschichte). Modellansätze zur Vorhersage von Artverbreitungen (i) korrelieren entweder beobachtete Artvorkommen mit abiotischen Umweltvariablen und ignorieren damit biotische Interaktionen, Ausbreitung und Nachwirkungen (statistische Artverbreitungsmodelle, SDM); oder (ii) sie modellieren mechanistisch, wie sich die verschiedenen Prozesse auf Arten auswirken (prozessbasierte Modelle, PBM). SDMs sind weitverbreitet, da sie einfach anzuwenden sind und verschiedenste Datenqualitäten akzeptieren. Aber sie beschreiben nicht korrekt, wie Arten dynamisch auf Umweltänderungen reagieren. PBMs sind ihnen in dieser Hinsicht überlegen. Allerdings benötigen diese sehr spezifische Daten, welche für viele Arten nicht verfügbar sind. Zudem sind sie oft komplexer und benötigen mehr Rechenkapazität. Relativ neu ist der Ansatz des Hybridmodells, welches statistische und prozessbasierte Modelle verknüpft und so ihre jeweiligen Stärken vereint. In dieser Arbeit, nutze ich sowohl statistische als auch prozessbasierte Modelle, um die Verbreitung von Arten vorherzusagen, und ich diskutiere ihre jeweiligen Schwächen, besonders für die Anwendung im Klimawandelkontext. Eine detaillierte Analyse der SDMs für boreale Baumarten in Finnland zeigt, dass nicht-klimatische Variablen - Bodeneigenschaften und biotische Interaktionen - wichtige Faktoren an der Baumgrenze sind und daher die Reaktion von Arten auf Klimaänderungen beeinflussen. Während die SDMs innerhalb der Wertebereiche ihrer Trainingsdatensätze erfolgreich sind, scheitern Versuche, die Modelle auf andere Regionen oder in die Zukunft zu übertragen. Die Visualisierung und der Vergleich des abgedeckten Umweltraums zwischen den Teildatensätzen liefert eine plausible Erklärung: Extrapolation. Basierend auf diesen Ergebnissen, analysiere ich den bedingten Erfolg eines etablierten PBMs (LPJ-GUESS), das ich auf dieselbe Fragestellung anwende. Die Untersuchung der Prozessbeschreibungen im Modell sowie der Parametrisierung zeigen, dass bereits implementierte Prozesse angepasst werden müssen (Konkurrenz, Störungen) und dass für boreale Wälder entscheidende Prozesse fehlen (Nährstoffe, Bewirtschaftung). Mithilfe von klimatischen Schwellenwerten, die sich über die Zeit verschieben, betone ich die eingeschränkte Übertragbarkeit von bioklimatischen Grenzwerten in LPJ-GUESS und ähnlichen PBMs. Indem ich die Performance beider Methoden in dieser Anwendung kritisch beleuchte, zeige ich, wie wichtig es ist, sich der Grenzen jedes Modellansatzes bewusst zu sein. Als Lösungsmöglichkeit füge ich dem bestehenden Repertoire der Hybridmodelle einen neuen Ansatz hinzu. Mithilfe von Simulationsexperimenten mit einem individuenbasierten PBM, das erfolgreich die Dynamik von Artgemeinschaften beschreibt (resultierend aus biotischen Faktoren, Ausbreitung und Nachwirkungen), untersuche ich die Resilienz von Küstenvegetation auf abrupte Änderungen der Hydrologie. Entsprechend der Ergebnisse dieser Resilienzanalyse passe ich die zeitlichen Vorhersagen eines SDMs an und übertrage so das nötige Prozesswissen von PBM zu SDM. Die Übertragungsrichtung von PBM zu SDM umgeht die Nachteile bestehender Hybridmodelle und verbessert die Anwendbarkeit für langfristige, großflächige Berechnungen. Ein weiterer Vorteil des vorgestellten Konzepts ist seine Flexibilität, denn es lässt sich einfach auf andere Modellarten, andere Definitionen von Umweltstörungen sowie andere Vorhersagegrößen anwenden. Zusammenfassend argumentiere ich, dass uns bereits vielfältige, erfolgversprechende Modellansätze zur Verfügung stehen, die noch weiterentwickelt werden können. Vor allem aber müssen sie mit mehr Bedacht angewendet werden. Voran kommen wir, indem wir die Schwächen der Ansätze berücksichtigen, ihre Stärken in Hybridmodellen kombinieren und die zugrunde liegenden Annahmen und damit verbundene Unsicherheiten deutlich machen. KW - species distribution KW - Artverbreitung KW - climate change KW - Klimawandel KW - hybrid model KW - Hybridmodell Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401482 ER - TY - JOUR A1 - Rybski, Diego A1 - Reusser, Dominik Edwin A1 - Winz, Anna-Lena A1 - Fichtner, Christina A1 - Sterzel, Till A1 - Kropp, Jürgen T1 - Cities as nuclei of sustainability? JF - Environment and Planning B: Urban Analytics and City Science N2 - We have assembled CO2 emission figures from collections of urban GHG emission estimates published in peer-reviewed journals or reports from research institutes and non-governmental organizations. Analyzing the scaling with population size, we find that the exponent is development dependent with a transition from super- to sub-linear scaling. From the climate change mitigation point of view, the results suggest that urbanization is desirable in developed countries. Further, we compare this analysis with a second scaling relation, namely the fundamental allometry between city population and area, and propose that density might be a decisive quantity too. Last, we derive the theoretical country-wide urban emissions by integration and obtain a dependence on the size of the largest city. KW - Scaling KW - cities KW - climate change KW - development process KW - allometry Y1 - 2017 U6 - https://doi.org/10.1177/0265813516638340 SN - 2399-8083 SN - 2399-8091 VL - 44 IS - 3 SP - 425 EP - 440 PB - Sage Publ. CY - London ER - TY - THES A1 - Riebold, Johannes T1 - On the linkage between future Arctic sea ice retreat, the large-scale atmospheric circulation and temperature extremes over Europe T1 - Untersuchung des Zusammenhangs zwischen zukünftigen Arktischen Meereisänderungen, der großskaligen atmosphärischen Zirkulation und Temperaturextremen über Europa N2 - Extreme weather and climate events are one of the greatest dangers for present-day society. Therefore, it is important to provide reliable statements on what changes in extreme events can be expected along with future global climate change. However, the projected overall response to future climate change is generally a result of a complex interplay between individual physical mechanisms originated within the different climate subsystems. Hence, a profound understanding of these individual contributions is required in order to provide meaningful assessments of future changes in extreme events. One aspect of climate change is the recently observed phenomenon of Arctic Amplification and the related dramatic Arctic sea ice decline, which is expected to continue over the next decades. The question to what extent Arctic sea ice loss is able to affect atmospheric dynamics and extreme events over mid-latitudes has received a lot of attention over recent years and still remains a highly debated topic. In this respect, the objective of this thesis is to contribute to a better understanding on the impact of future Arctic sea ice retreat on European temperature extremes and large-scale atmospheric dynamics. The outcomes are based on model data from the atmospheric general circulation model ECHAM6. Two different sea ice sensitivity simulations from the Polar Amplification Intercomparison Project are employed and contrasted to a present day reference experiment: one experiment with prescribed future sea ice loss over the entire Arctic, as well as another one with sea ice reductions only locally prescribed over the Barents-Kara Sea.% prescribed over the entire Arctic, as well as only locally over the Barent/Karasea with a present day reference experiment. The first part of the thesis focuses on how future Arctic sea ice reductions affect large-scale atmospheric dynamics over the Northern Hemisphere in terms of occurrence frequency changes of five preferred Euro-Atlantic circulation regimes. When compared to circulation regimes computed from ERA5 it shows that ECHAM6 is able to realistically simulate the regime structures. Both ECHAM6 sea ice sensitivity experiments exhibit similar regime frequency changes. Consistent with tendencies found in ERA5, a more frequent occurrence of a Scandinavian blocking pattern in midwinter is for instance detected under future sea ice conditions in the sensitivity experiments. Changes in occurrence frequencies of circulation regimes in summer season are however barely detected. After identifying suitable regime storylines for the occurrence of European temperature extremes in winter, the previously detected regime frequency changes are used to quantify dynamically and thermodynamically driven contributions to sea ice-induced changes in European winter temperature extremes. It is for instance shown how the preferred occurrence of a Scandinavian blocking regime under low sea ice conditions dynamically contributes to more frequent midwinter cold extreme occurrences over Central Europe. In addition, a reduced occurrence frequency of a Atlantic trough regime is linked to reduced winter warm extremes over Mid-Europe. Furthermore, it is demonstrated how the overall thermodynamical warming effect due to sea ice loss can result in less (more) frequent winter cold (warm) extremes, and consequently counteracts the dynamically induced changes. Compared to winter season, circulation regimes in summer are less suitable as storylines for the occurrence of summer heat extremes. Therefore, an approach based on circulation analogues is employed in order to quantify thermodyamically and dynamically driven contributions to sea ice-induced changes of summer heat extremes over three different European sectors. Reduced occurrences of blockings over Western Russia are detected in the ECHAM6 sea ice sensitivity experiments; however, arguing for dynamically and thermodynamically induced contributions to changes in summer heat extremes remains rather challenging. N2 - Wetter- und Klimaextreme stellen eine der größten Gefahren für die heutige Gesellschaft dar. Daher ist es essentiell verlässliche Aussagen darüber zu treffen, welche Änderungen solcher Extremereignisse im Zuge des zukünftigen globalen Klimawandels zu erwarten sind. Die projizierten Klimaänderungen, welche mit dem zukünftigen Klimawandel einhergehen, sind jedoch im Allgemeinen das Ergebnis komplexer Wechselwirkungen von verschiedenen physikalischen und dynamischen Prozessen in den verschiedenen Subsystemen des Klimasystems. Daher ist ein tiefgreifendes Verständnis dieser einzelnen Prozesse erforderlich, um aussagekräftige Einschätzungen für die Zukunft abgeben zu können. Ein Aspekt des globalen Klimawandels über die letzten Dekaden ist das Phänomen der arktischen Verstärkung und der damit verbundene dramatische Rückgang des Arktischen Meereises, welcher sich voraussichtlich in den nächsten Jahrzehnten auch fortsetzen wird. Die Frage, inwieweit der Rückgang des arktischen Meereises die atmosphärische Dynamik sowie Wetter- und Klimaextreme über den mittleren Breiten beeinflussen kann, wurde in den letzten Jahren von einer Vielzahl von Studien adressiert, bleibt jedoch bis zum heutigen Tage ein kontrovers diskutiertes Thema. Aus diesem Grund zielt die vorliegende Arbeit darauf ab einen Beitrag zu einem besseren Verständnis der Auswirkungen des zukünftigen arktischen Meereisrückgangs auf europäische Temperaturextreme, sowie auf Änderungen der relevanten großräumigen atmosphärischen Zirkulationsbedingungen zu leisten. Die Ergebnisse dieser Arbeit basieren auf Modelldaten des atmosphärischen Zirkulationsmodells ECHAM6. Zwei unterschiedliche Meereissensitivitätsexperimente aus dem Polar Amplification Intercomparison Project werden analysiert: ein Experiment mit vorgeschriebener zukünftiger Meereisreduktion über der gesamten Arktis, sowie ein Weiteres, in dem jediglich das Meereis über der Barents- und Karasee verringert wird. Beide Experimente werden einer Referenzsimulation gegenübergestellt, welche gegenwärtige Meereisbedingungen repräsentiert. Zunächst wird analysiert, inwieweit der zukünftige arktische Meereisrückgang Einfluss auf die großräumige atmosphärische Zirkulation über der nördlichen Hemisphäre hat. Dazu werden im Rahmen dieser Arbeit die Häufigkeitsänderungen von fünf bevorzugten atmosphärischen Zirkulationsregimen bestimmt. Beide Sensitivitätsexperimente zeigen diesbezüglich ähnliche Änderungen in den Auftrittswahrscheinlichkeiten der Regime. In Übereinstimmung mit Ergebnissen, welche auf der ERA5-Reanalyse basieren, zeigt sich beispielsweise ein häufigeres Auftreten eines skandinavischen Blockierungsmusters im Mittwinter unter reduzierten Meereisbedingungen. Änderungen in der Auftrittswahrscheinlichkeit verschiedener Zirkulationsregime in der Sommersaison werden hingegen kaum detektiert. Anschließend werden jene Regime identifiziert, welche mit einem häufigerem Auftreten von winterlichen Temperaturextremen über Europa in Verbindung gebracht werden können. In Kombination mit den zuvor erfassten meereisbedingten Änderungen in den Auftrittswahrscheinlichkeiten der Regime werden dann dynamisch und thermodynamisch induzierte Beiträge zu meereisbedingten Änderungen europäischer Temperaturextreme quantifiziert. Es zeigt sich beispielsweise, dass das bevorzugte Auftreten des skandinavischen Blockierungsmusters unter zukünftigen Meereisbedingungen dynamisch zu häufigeren Kälteextremereignissen im Winter über Mitteleuropa beiträgt. Darüber hinaus kann eine reduzierte Häufigkeit des Auftretens eines Regimes, welches mit einem Trog über dem westlichen Atlantik assoziiert werden kann, mit einer verringerten Anzahl von sehr warmen Wintertagen über Mitteleuropa in Verbindung gebracht werden. Es wird zudem gezeigt, wie der in den Modellsimulationen thermodynamisch induzierte Erwärmungseffekt infolge der reduzierten Meereisbedingungen zu einem häufigeren (weniger häufigeren) Auftreten von extrem warmen (kalten) Wintertagen führen kann. Dieser thermodynamische Effekt kann folglich den dynamisch induzierten Veränderungen entgegenwirken. Zirkulationsregime in der Sommersaison können nur bedingt mit einem häufigeren Auftreten von europäischen Hitzeextremen im Sommer in Verbindung gebracht werden. Aus diesem Grund wird ein zusätzlicher methodischer Ansatz verwendet, der auf der Identifikation von Zirkulationsmustern basiert, welche große Ähnlichkeit zu typischen atmosphärischen Blockierungen während vergangener Hitzewellen über verschiedenen europäischen Regionen aufweisen. Dies ermöglicht es meereisbedingte Änderungen im Auftreten von Hitzeextremen über drei verschiedene europäische Sektoren in thermodynamisch und dynamisch induzierte Beiträge zu zerlegen. In den Meereissensitivitätsexperimenten kann beispielsweise ein selteneres Auftreten von Blockierungen über Westrussland detektiert werden. Eine in sich geschlossene physikalische Argumentation bezüglich der dynamisch und thermodynamisch induzierten Beiträge zu den detektierten Änderungen in der Häufigkeit von sommerlichen Hitzeextremen stellt jedoch weiterhin eine Herausforderung dar. Im Vergleich zu anderen Aspekten des zukünftigen Klimawandels, wie beispielsweise dem thermodynamischen Einfluss global erhöhter Meeresoberflächentemperaturen, zeigt sich, dass die meereisinduzierten Auswirkungen auf europäische Temperaturextreme wahrscheinlich von untergeordneter Bedeutung sind. Nichtsdestotrotz können die Ergebnisse dieser Arbeit zu einem besseren Verständnis gegenwärtiger und zeitnah zu erwartender Änderungen von Temperaturextremereignissen über Europa beitragen. Zusätzlich dazu bietet die vorliegende Arbeit eine nützliche und ergänzende Perspektive auf die wissenschaftliche Fragestellung, inwieweit der Arktische Klimawandel mit Änderungen in der atmosphärischen Zirkulation und Extremereignissen über den mittleren Breiten in Verbindung gebracht werden kann. Folglich trägt diese Arbeit damit dazu bei einem allgemeinen Konsens in diesem stark debattierten Forschungsgebiet einen Schritt näher zu kommen. KW - extreme events KW - Arctic sea ice KW - circulation regimes KW - atmosphere KW - climate change KW - Extremereignisse KW - arktisches Meereis KW - Zirkulationsregime KW - Klimawandel KW - Atmosphäre KW - large-scale circulation KW - großskalige Zirkulation Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-604883 ER - TY - THES A1 - Pradhan, Prajal T1 - Food demand and supply under global change T1 - Nahrungsmittelnachfrage und -Versorgung im Globalen Wandel N2 - Anthropogenic activities have transformed the Earth's environment, not only on local level, but on the planetary-scale causing global change. Besides industrialization, agriculture is a major driver of global change. This change in turn impairs the agriculture sector, reducing crop yields namely due to soil degradation, water scarcity, and climate change. However, this is a more complex issue than it appears. Crop yields can be increased by use of agrochemicals and fertilizers which are mainly produced by fossil energy. This is important to meet the increasing food demand driven by global demographic change, which is further accelerated by changes in regional lifestyles. In this dissertation, we attempt to address this complex problem exploring agricultural potential globally but on a local scale. For this, we considered the influence of lifestyle changes (dietary patterns) as well as technological progress and their effects on climate change, mainly greenhouse gas (GHG) emissions. Furthermore, we examined options for optimizing crop yields in the current cultivated land with the current cropping patterns by closing yield gaps. Using this, we investigated in a five-minute resolution the extent to which food demand can be met locally, and/or by regional and/or global trade. Globally, food consumption habits are shifting towards calorie rich diets. Due to dietary shifts combined with population growth, the global food demand is expected to increase by 60-110% between 2005 and 2050. Hence, one of the challenges to global sustainability is to meet the growing food demand, while at the same time, reducing agricultural inputs and environmental consequences. In order to address the above problem, we used several freely available datasets and applied multiple interconnected analytical approaches that include artificial neural network, scenario analysis, data aggregation and harmonization, downscaling algorithm, and cross-scale analysis. Globally, we identified sixteen dietary patterns between 1961 and 2007 with food intakes ranging from 1,870 to 3,400 kcal/cap/day. These dietary patterns also reflected changing dietary habits to meat rich diets worldwide. Due to the large share of animal products, very high calorie diets that are common in the developed world, exhibit high total per capita emissions of 3.7-6.1 kg CO2eq./day. This is higher than total per capita emissions of 1.4-4.5 kg CO2eq./day associated with low and moderate calorie diets that are common in developing countries. Currently, 40% of the global crop calories are fed to livestock and the feed calorie use is four times the produced animal calories. However, these values vary from less than 1 kcal to greater 10 kcal around the world. On the local and national scale, we found that the local and national food production could meet demand of 1.9 and 4.4 billion people in 2000, respectively. However, 1 billion people from Asia and Africa require intercontinental agricultural trade to meet their food demand. Nevertheless, these regions can become food self-sufficient by closing yield gaps that require location specific inputs and agricultural management strategies. Such strategies include: fertilizers, pesticides, soil and land improvement, management targeted on mitigating climate induced yield variability, and improving market accessibility. However, closing yield gaps in particular requires global N-fertilizer application to increase by 45-73%, P2O5 by 22-46%, and K2O by 2-3 times compare to 2010. Considering population growth, we found that the global agricultural GHG emissions will approach 7 Gt CO2eq./yr by 2050, while the global livestock feed demand will remain similar to 2000. This changes tremendously when diet shifts are also taken into account, resulting in GHG emissions of 20 Gt CO2eq./yr and an increase of 1.3 times in the crop-based feed demand between 2000 and 2050. However, when population growth, diet shifts, and technological progress by 2050 were considered, GHG emissions can be reduced to 14 Gt CO2eq./yr and the feed demand to nearly 1.8 times compare to that in 2000. Additionally, our findings shows that based on the progress made in closing yield gaps, the number of people depending on international trade can vary between 1.5 and 6 billion by 2050. In medium term, this requires additional fossil energy. Furthermore, climate change, affecting crop yields, will increase the need for international agricultural trade by 4% to 16%. In summary, three general conclusions are drawn from this dissertation. First, changing dietary patterns will significantly increase crop demand, agricultural GHG emissions, and international food trade in the future when compared to population growth only. Second, such increments can be reduced by technology transfer and technological progress that will enhance crop yields, decrease agricultural emission intensities, and increase livestock feed conversion efficiencies. Moreover, international trade dependency can be lowered by consuming local and regional food products, by producing diverse types of food, and by closing yield gaps. Third, location specific inputs and management options are required to close yield gaps. Sustainability of such inputs and management largely depends on which options are chosen and how they are implemented. However, while every cultivated land may not need to attain its potential yields to enable food security, closing yield gaps only may not be enough to achieve food self-sufficiency in some regions. Hence, a combination of sustainable implementations of agricultural intensification, expansion, and trade as well as shifting dietary habits towards a lower share of animal products is required to feed the growing population. N2 - Der Mensch beeinflusst die landwirtschaftlichen Erträge unmittelbar durch anthropogen verursachte Treiber des globalen Wandels, wie Bodenerosion, Wasserknappheit und Klimawandel, wovon er und seine Lebensmittelversorgung wiederum direkt betroffen sein werden. Einerseits steigert der Einsatz von Agrochemikalien und mithilfe fossiler Energien erzeugte Dünger die landwirtschaftlichen Erträge. Andererseits tragen Bevölkerungswachstum sowie die Tendenz zu kalorienreichen Ernährungsweisen zu einer vermehrten Nahrungsmittelnachfrage von 60-110% von 2005 bis 2050 bei. Das Decken der wachsenden Lebensmittelnachfrage bei gleichzeitiger Reduktion des landwirtschaftlichen Ressourcenverbrauchs und Umweltbelastungen stellt eine zentrale Herausforderung für die globale Nachhaltigkeit dar. In diesem Rahmen versucht diese Arbeit, die Potentiale der globalen Landwirtschaft auf kleinräumiger Skala auszuloten. Hierbei werden Prognosen zu Auswirkungen von Ernährungsmustern und Veränderungen der landwirtschaftlichen Produktionsmethoden unter Beibehaltung der der Anbaufolge und deren Einfluss auf den Klimawandel berücksichtigt. Projektionen basierend auf räumlich hoch aufgelösten Daten lassen Aussagen darüber zu, inwieweit die Nahrungsmittelproduktion lokal sichergestellt werden kann und falls nicht, wie dies durch regionalen und/oder globalen Handel erfolgen kann. Frei verfügbare Datensätze und Ansätze, wie künstliche neuronale Netze, Szenarioanalysen, Downscaling und skalenübergreifende Methoden werden zur Bearbeitung genutzt. Für den Zeitraum von 1961 bis 2007 konnten 16 globale Ernährungstypologien identifiziert werden. Diese spiegeln vor allem eine Tendenz hin zu fleischhaltiger Kost wider. Durch den hohen Anteil tierischer Produkte verursachen kalorienreiche Ernährungsmuster, wie in Industrieländern üblich, hohe pro Kopf Emissionen von 3,7-6,1 kg CO2eq./Tag und übersteigen die pro Kopf Emissionen von 1,4-4,5 kg CO2eq./Tag einer kalorienarmen Ernährungsweise in Entwicklungsländern. Weltweit werden 40% aller landwirtschaftlichen Erzeugnisse als Futtermittel genutzt, was bedeutet, dass aus einem regional variierenden Wert von weniger als 1 kcal bis 10 kcal Getreide, 1 kcal tierische Produkte erzeugt werden. Im Jahr 2000 konnten lokale und nationale Nahrungsmittelproduktionen die Nachfrage von 1,9 bzw. 4,4 Milliarden Menschen erfüllen. Trotzdem sind ca. 1 Milliarde Menschen in Asien und Afrika auf interkontinentalen Handel angewiesen um ihre Lebensmittelnachfrage zu decken. Bei alleiniger Betrachtung des Bevölkerungswachstums wird ein Anstieg der globalen landwirtschaftlichen Treibhausgasemissionen bis zum Jahr 2050 auf jährlich 7 Gt CO2eq. deutlich, während die Nachfrage nach angebauten Futtermitteln gegenüber 2000 annähernd gleich bleiben wird. Das Hinzuziehen von Ernährungsgewohnheiten zeigt, dass zwischen 2000 und 2050 ein Anstieg der Treibhausgasemissionen auf 20 Gt CO2eq. pro Jahr und eine 1,3-fach gesteigerte Nachfrage nach Futtermittel möglich ist. Der zusätzliche Einbezug von technologischem Fortschritt ergibt, dass Emissionen auf jährlich 14 Gt CO2eq. und der Anstieg der Futtermittelnachfrage auf das 0,8-fache reduziert werden können. Daraus geht die Erkenntnis hervor, dass je nachdem, wie erfolgreich Ertragslücken geschlossen werden, 1,5 bis 6 Milliarden Menschen vom internationalen Handel abhängig sind, welcher mittelfristig zusätzliche fossile Energie benötigt. Der Einfluss des Klimawandels auf Ernteerträge wird den Bedarf an internationalem Handel mit landwirtschaftlichen Produkten um 4% bis 16% erhöhen. Weiterhin lässt sich schlussfolgern, dass insbesondere veränderte Ernährungsgewohnheiten, im Gegensatz zu Bevölkerungswachstum, die Nachfrage nach Getreide, die landwirtschaftlichen Treibhausgasemissionen sowie den internationalen Handel mit Nahrungsmitteln erhöhen werden. Durch adäquaten Technologietransfer und technologischen Fortschritt lassen sich Ernteerträge steigern, landwirtschaftliche Emissionen senken und die Effizienz der Umwandlung von Futtermittel in tierische Produkte erhöhen. Abhängigkeiten vom internationalen Handel könnten durch den Konsum lokaler und regionaler Produkte und durch Diversifizierung von Erzeugnissen verringert werden. Zur Schließung von Ertragslücken sind ortsspezifische Maßnahmen erforderlich, wie die nachhaltige Verwendung von Düngemitteln und Pestiziden, Bodenverbesserung, Maßnahmen zur Abschwächung klimabedingter Ernteschwankungen sowie ein verbesserter Marktzugang. Um die Ernährung einer wachsenden Weltbevölkerung zu gewährleisten, ist eine Kombination aus nachhaltiger Intensivierung und Ausweitung der Landwirtschaft, des Handels sowie Ernährungsmuster mit geringeren Anteilen tierischer Produkte notwendig. KW - food security KW - global change KW - climate change KW - yield gap KW - dietary patterns KW - livestock feed KW - food self-sufficiency KW - emissions KW - food demand KW - dietary changes KW - self-organising maps KW - cross-scale analysis KW - sustainability KW - Nahrungsmittelsicherheit KW - Nahrungsmittelselbstversorgung KW - Ertragslücken KW - Emissionen KW - Futtermittel KW - Ernährungsmuster KW - Ernährungsumstellung KW - Klimawandel KW - Lebensmittelnachfrage KW - selbstorganisierte Karten KW - skalenübergreifende Analyse KW - Nachhaltigkeit Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-77849 ER - TY - THES A1 - Post, Joachim T1 - Integrated process-based simulation of soil carbon dynamics in river basins under present, recent past and future environmental conditions T1 - Prozessbasierte Modellierung der Bodenkohlenstoffdynamik in Flusseinzugsgebieten unter heutigen und zukünftigen Umweltbedingungen N2 - Soils contain a large amount of carbon (C) that is a critical regulator of the global C budget. Already small changes in the processes governing soil C cycling have the potential to release considerable amounts of CO2, a greenhouse gas (GHG), adding additional radiative forcing to the atmosphere and hence to changing climate. Increased temperatures will probably create a feedback, causing soils to release more GHGs. Furthermore changes in soil C balance impact soil fertility and soil quality, potentially degrading soils and reducing soils function as important resource. Consequently the assessment of soil C dynamics under present, recent past and future environmental conditions is not only of scientific interest and requires an integrated consideration of main factors and processes governing soil C dynamics. To perform this assessment an eco-hydrological modelling tool was used and extended by a process-based description of coupled soil carbon and nitrogen turnover. The extended model aims at delivering sound information on soil C storage changes beside changes in water quality, quantity and vegetation growth under global change impacts in meso- to macro-scale river basins, exemplary demonstrated for a Central European river basin (the Elbe). As a result this study: ▪ Provides information on joint effects of land-use (land cover and land management) and climate changes on croplands soil C balance in the Elbe river basin (Central Europe) presently and in the future. ▪ Evaluates which processes, and at what level of process detail, have to be considered to perform an integrated simulation of soil C dynamics at the meso- to macro-scale and demonstrates the model’s capability to simulate these processes compared to observations. ▪ Proposes a process description relating soil C pools and turnover properties to readily measurable quantities. This reduces the number of model parameters, enhances the comparability of model results to observations, and delivers same performance simulating long-term soil C dynamics as other models. ▪ Presents an extensive assessment of the parameter and input data uncertainty and their importance both temporally and spatially on modelling soil C dynamics. For the basin scale assessments it is estimated that croplands in the Elbe basin currently act as a net source of carbon (net annual C flux of 11 g C m-2 yr-1, 1.57 106 tons CO2 yr-1 entire croplands on average). Although this highly depends on the amount of harvest by-products remaining on the field. Future anticipated climate change and observed climate change in the basin already accelerates soil C loss and increases source strengths (additional 3.2 g C m-2 yr-1, 0.48 106 tons CO2 yr-1 entire croplands). But anticipated changes of agro-economic conditions, translating to altered crop share distributions, display stronger effects on soil C storage than climate change. Depending on future use of land expected to fall out of agricultural use in the future (~ 30 % of croplands area as “surplus” land), the basin either considerably looses soil C and the net annual C flux to the atmosphere increases (surplus used as black fallow) or the basin converts to a net sink of C (sequestering 0.44 106 tons CO2 yr-1 under extensified use as ley-arable) or reacts with decrease in source strength when using bioenergy crops. Bioenergy crops additionally offer a considerable potential for fossil fuel substitution (~37 PJ, 1015 J per year), whereas the basin wide use of harvest by-products for energy generation has to be seen critically although offering an annual energy potential of approximately 125 PJ. Harvest by-products play a central role in soil C reproduction and a percentage between 50 and 80 % should remain on the fields in order to maintain soil quality and fertility. The established modelling tool allows quantifying climate, land use and major land management impacts on soil C balance. New is that the SOM turnover description is embedded in an eco-hydrological river basin model, allowing an integrated consideration of water quantity, water quality, vegetation growth, agricultural productivity and soil carbon changes under different environmental conditions. The methodology and assessment presented here demonstrates the potential for integrated assessment of soil C dynamics alongside with other ecosystem services under global change impacts and provides information on the potentials of soils for climate change mitigation (soil C sequestration) and on their soil fertility status. N2 - Böden speichern große Mengen Kohlenstoff (C) und beeinflussen wesentlich den globalen C Haushalt. Schon geringe Änderungen der Steuergrößen des Bodenkohlenstoffs können dazu führen, dass beträchtliche Mengen CO2, ein Treibhausgas, in die Atmosphäre gelangen und zur globalen Erwärmung und dem Klimawandel beitragen. Der globale Temperaturanstieg verursacht dabei höchstwahrscheinlich eine Rückwirkung auf den Bodenkohlenstoffhaushalt mit einem einhergehenden erhöhten CO2 Fluss der Böden in die Atmosphäre. Weiterhin wirken sich Änderungen im Bodenkohlenstoffhaushalt auf die Bodenfruchtbarkeit und Bodenqualität aus, wobei eine Minderung der Bodenkohlenstoffvorräte wichtige Funtionen des Bodens beeinträchtigt und folglich den Boden als wichtige Ressource nachhaltig beinflusst. Demzufolge ist die Quantifizierung der Bodenkohlenstoffdynamik unter heutigen und zukünftigen Bedingungen von hohem Interesse und erfordert eine integrierte Betrachtung der wesentlichen Faktoren und Prozesse. Zur Quantifizierung wurde ein ökohydrologisches Flusseinzugsgebietsmodell erweitert. Ziel des erweiterten Modells ist es fundierte Informationen zu Veränderungen des Bodenkohlenstoffhaushaltes, neben Veränderungen der Wasserqualität, der Wasserverfügbarkeit und des Vegetationswachstums unter Globalem Wandel in meso- bis makroskaligen Flusseinzugsgebieten bereitzustellen. Dies wird am Beispiel eines zentraleuropäischen Flusseinzugsgebietes (der Elbe) demonstriert. Zusammenfassend ergibt diese Arbeit: ▪ eine Quantifizierung der heutigen und zukünftigen Auswirkungen des Klimawandels sowie von Änderungen der Landnutzung (Bodenbedeckung und Bodenbearbeitung) auf den Bodenkohlenstoffhaushalt agrarisch genutzter Räume im Einzugsgebiet der Elbe. ▪ eine Beurteilung welche Prozesse, und zu welchem Prozessdetail, zur integrierten Simulation der Bodenkohlenstoffdynamik in der meso- bis makroskala zu berücksichtigen sind. Weiterhin wird die Eignung der Modellerweiterung zur Simulation dieser Prozesse unter der Zuhilfenahme von Messwerten dargelegt. ▪ darauf begründet wird eine Prozessbeschreibung vorgeschlagen die die Eigenschaften der Bodenkohlenstoffspeicher und deren Umsetzungsrate mit in der betrachteten Skala zur Verfügung stehenden Messdaten und Geoinformationen verbindet. Die vorgeschlagene Prozessbeschreibung kann als robust hinsichtlich der Parametrisierung angesehen werden, da sie mit vergleichsweise wenigen Modelparametern eine ähnliche Güte wie andere Bodenkohlenstoffmodelle ergibt. ▪ eine umfassende Betrachtung der Modell- und Eingangsdatenunsicherheiten von Modellergebnissen in ihrer räumlichen und zeitlichen Ausprägung. Das in dieser Arbeit vorgestellte Modellsystem erlaubt eine Quantifizierung der Auswirkungen des Klima- und Landnutzungswandels auf den Bodenkohlenstoffhaushalt. Neu dabei ist, dass neben Auswirkungen auf den Bodenkohlenstoffhaushalt auch Auswirkungen auf Wasserverfügbarkeit, Wasserqualität, Vegetationswachstum und landwirtschaftlicher Produktivität erfasst werden können. Die im Rahmen dieser Arbeit dargelegten Ergebnisse erlauben eine integrierte Betrachtung der Auswirkungen des Globalen Wandels auf wichtige Ökosystemfunktionen in meso- bis makro-skaligen Flusseinzugsgebieten. Weiterhin können hier gewonnene Informationen zur Potentialabschätzung der Böden zur Linderung des Klimawandels (durch C Festlegung) und zum Erhalt ihrer Fruchtbarkeit genutzt werden. KW - Kohlenstoff KW - Stickstoff KW - Anthropogene Klimaänderung KW - Bioenergie KW - Unsicherheit KW - Ökohydrologie KW - Ökosystemmodellierung KW - Landnutzungsänderung KW - Modellsensitivität KW - eco-hydrology KW - Ecosystem modelling KW - Carbon KW - Nitrogen KW - land use change KW - climate change KW - terrestrial carbon balance KW - model uncertainty Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-11507 ER - TY - JOUR A1 - Pan, Xiaohui A1 - Wang, Weishi A1 - Liu, Tie A1 - Huang, Yue A1 - De Maeyer, Philippe A1 - Guo, Chenyu A1 - Ling, Yunan A1 - Akmalov, Shamshodbek T1 - Quantitative detection and attribution of groundwater level variations in the Amu Darya Delta JF - Water N2 - In the past few decades, the shrinkage of the Aral Sea is one of the biggest ecological catastrophes caused by human activity. To quantify the joint impact of both human activities and climate change on groundwater, the spatiotemporal groundwater dynamic characteristics in the Amu Darya Delta of the Aral Sea from 1999 to 2017 were analyzed, using the groundwater level, climate conditions, remote sensing data, and irrigation information. Statistics analysis was adopted to analyze the trend of groundwater variation, including intensity, periodicity, spatial structure, while the Pearson correlation analysis and principal component analysis (PCA) were used to quantify the impact of climate change and human activities on the variabilities of the groundwater level. Results reveal that the local groundwater dynamic has varied considerably. From 1999 to 2002, the groundwater level dropped from -189 cm to -350 cm. Until 2017, the groundwater level rose back to -211 cm with fluctuation. Seasonally, the fluctuation period of groundwater level and irrigation water was similar, both were about 18 months. Spatially, the groundwater level kept stable within the irrigation area and bare land but fluctuated drastically around the irrigation area. The Pearson correlation analysis reveals that the dynamic of the groundwater level is closely related to irrigation activity within the irrigation area (Nukus: -0.583), while for the place adjacent to the Aral Sea, the groundwater level is closely related to the Large Aral Sea water level (Muynak: 0.355). The results of PCA showed that the cumulative contribution rate of the first three components exceeds 85%. The study reveals that human activities have a great impact on groundwater, effective management, and the development of water resources in arid areas is an essential prerequisite for ecological protection. KW - groundwater level variation KW - climate change KW - human activities KW - statistical analysis KW - Amu Darya Delta Y1 - 2020 U6 - https://doi.org/10.3390/w12102869 SN - 2073-4441 VL - 12 IS - 10 PB - MDPI CY - Basel ER - TY - JOUR A1 - Oguntunde, Philip G. A1 - Abiodun, Babatunde Joseph A1 - Lischeid, Gunnar A1 - Abatan, Abayomi A. T1 - Droughts projection over the Niger and Volta River basins of West Africa at specific global warming levels JF - International Journal of Climatology N2 - This study investigates possible impacts of four global warming levels (GWLs: GWL1.5, GWL2.0, GWL2.5, and GWL3.0) on drought characteristics over Niger River basin (NRB) and Volta River basin (VRB). Two drought indices-Standardized Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI)-were employed in characterizing droughts in 20 multi-model simulation outputs from the Coordinated Regional Climate Downscaling Experiment (CORDEX). The performance of the simulation in reproducing basic hydro-climatological features and severe drought characteristics (i.e., magnitude and frequency) in the basins were evaluated. The projected changes in the future drought frequency were quantified and compared under the four GWLs for two climate forcing scenarios (RCP8.5 and RCP4.5). The regional climate model (RCM) ensemble gives a realistic simulation of historical hydro-climatological variables needed to calculate the drought indices. With SPEI, the simulation ensemble projects an increase in the magnitude and frequency of severe droughts over both basins (NRB and VRB) at all GWLs, but the increase, which grows with the GWLs, is higher over NRB than over VRB. More than 75% of the simulations agree on the projected increase at GWL1.5 and all simulations agree on the increase at higher GWLs. With SPI, the projected changes in severe drought is weaker and the magnitude remains the same at all GWLs, suggesting that SPI projection may underestimate impacts of the GWLs on the intensity and severity of future drought. The results of this study have application in mitigating impact of global warming on future drought risk over the regional water systems. KW - climate change KW - drought index KW - global warming levels KW - river basins KW - West Africa KW - CORDEX data Y1 - 2019 VL - 40 IS - 13 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - GEN A1 - Oguntunde, Philip G. A1 - Abiodun, Babatunde Joseph A1 - Lischeid, Gunnar A1 - Abatan, Abayomi A. T1 - Droughts projection over the Niger and Volta River basins of West Africa at specific global warming levels T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - This study investigates possible impacts of four global warming levels (GWLs: GWL1.5, GWL2.0, GWL2.5, and GWL3.0) on drought characteristics over Niger River basin (NRB) and Volta River basin (VRB). Two drought indices-Standardized Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI)-were employed in characterizing droughts in 20 multi-model simulation outputs from the Coordinated Regional Climate Downscaling Experiment (CORDEX). The performance of the simulation in reproducing basic hydro-climatological features and severe drought characteristics (i.e., magnitude and frequency) in the basins were evaluated. The projected changes in the future drought frequency were quantified and compared under the four GWLs for two climate forcing scenarios (RCP8.5 and RCP4.5). The regional climate model (RCM) ensemble gives a realistic simulation of historical hydro-climatological variables needed to calculate the drought indices. With SPEI, the simulation ensemble projects an increase in the magnitude and frequency of severe droughts over both basins (NRB and VRB) at all GWLs, but the increase, which grows with the GWLs, is higher over NRB than over VRB. More than 75% of the simulations agree on the projected increase at GWL1.5 and all simulations agree on the increase at higher GWLs. With SPI, the projected changes in severe drought is weaker and the magnitude remains the same at all GWLs, suggesting that SPI projection may underestimate impacts of the GWLs on the intensity and severity of future drought. The results of this study have application in mitigating impact of global warming on future drought risk over the regional water systems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1203 KW - climate change KW - drought index KW - global warming levels KW - river basins KW - West Africa KW - CORDEX data Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-525943 SN - 1866-8372 IS - 13 ER - TY - THES A1 - Nguyen, Van Khanh Triet T1 - Flood dynamics in the Vietnamese Mekong Delta T1 - Hochwasserdynamik im vietnamesischen Mekong-Delta BT - Current state and future projections BT - Aktueller Stand und künftige Prognosen N2 - Today, the Mekong Delta in the southern of Vietnam is home for 18 million people. The delta also accounts for more than half of the country’s food production and 80% of the exported rice. Due to the low elevation, it is highly susceptible to the risk of fluvial and coastal flooding. Although extreme floods often result in excessive damages and economic losses, the annual flood pulse from the Mekong is vital to sustain agricultural cultivation and livelihoods of million delta inhabitants. Delta-wise risk management and adaptation strategies are required to mitigate the adverse impacts from extreme events while capitalising benefits from floods. However, a proper flood risk management has not been implemented in the VMD, because the quantification of flood damage is often overlooked and the risks are thus not quantified. So far, flood management has been exclusively focused on engineering measures, i.e. high- and low- dyke systems, aiming at flood-free or partial inundation control without any consideration of the actual risks or a cost-benefit analysis. Therefore, an analysis of future delta flood dynamics driven these stressors is valuable to facilitate the transition from sole hazard control towards a risk management approach, which is more cost-effective and also robust against future changes in risk. Built on these research gaps, this thesis investigates the current state and future projections of flood hazard, damage and risk to rice cultivation, the most important economic activity in the VMD. The study quantifies the changes in risk and hazard brought by the development of delta-based flood control measures in the last decades, and analyses the expected changes in risk driven by the changing climate, rising sea-level and deltaic land subsidence, and finally the development of hydropower projects in the Mekong Basin. For this purpose, flood trend analyses and comprehensive hydraulic modelling were performed, together with the development of a concept to quantify flood damage and risk to rice plantation. The analysis of observed flood levels revealed strong and robust increasing trends of peak and duration downstream of the high-dyke areas with a step change in 2000/2001, i.e. after the disastrous flood which initiated the high-dyke development. These changes were in contrast to the negative trends detected upstream, suggested that high-dyke development has shifted flood hazard downstream. Findings of the trend’s analysis were later confirmed by hydraulic simulations of the two recent extreme floods in 2000 and 2011, where the hydrological boundaries and dyke system settings were interchanged. However, the high-dyke system was not the only and often not the main cause for a shift of flood hazard, as a comparative analysis of these two extreme floods proved. The high-dyke development was responsible for 20–90% of the observed changes in flood level between 2000 and 2011, with large spatial variances. The particular flood hydrograph of the two events had the highest contribution in the northern part of the delta, while the tidal level had 2–3 times higher influence than the high-dyke in the lower-central and coastal areas downstream of high-dyke areas. The impact of the high-dyke development was highest in the areas closely downstream of the high-dyke area just south of the Cambodia-Vietnam border. The hydraulic simulations also validated that the concurrence of the flood peak with spring tides, i.e. high sea level along the coast, amplified the flood level and inundation in the central and coastal regions substantially. The risk assessment quantified the economic losses of rice cultivation to USD 25.0 and 115 million (0.02–0.1% of the total GDP of Vietnam in 2011) corresponding to the 10-year and the 100-year floods, with an expected annual damage of about USD 4.5 million. A particular finding is that the flood damage was highly sensitive to flood timing. Here, a 10-year event with an early peak, i.e. late August-September, could cause as much damage as a 100-year event that peaked in October. This finding underlines the importance of a reliable early flood warning, which could substantially reduce the damage to rice crops and thus the risk. The developed risk assessment concept was furthermore applied to investigate two high-dyke development alternatives, which are currently under discussion among the administrative bodies in Vietnam, but also in the public. The first option favouring the utilization of the current high-dyke compartments as flood retention areas instead for rice cropping during the flood season could reduce flood hazard and expected losses by 5–40%, depending on the region of the delta. On the contrary, the second option promoting the further extension of the areas protected by high-dyke to facilitate third rice crop planting on a larger area, tripled the current expected annual flood damage. This finding challenges the expected economic benefit of triple rice cultivation, in addition to the already known reducing of nutrient supply by floodplain sedimentation and thus higher costs for fertilizers. The economic benefits of the high-dyke and triple rice cropping system is further challenged by the changes in the flood dynamics to be expected in future. For the middle of the 21st century (2036-2065) the effective sea-level rise an increase of the inundation extent by 20–27% was projected. This corresponds to an increase of flood damage to rice crops in dry, normal and wet year by USD 26.0, 40.0 and 82.0 million in dry, normal and wet year compared to the baseline period 1971-2000. Hydraulic simulations indicated that the planned massive development of hydropower dams in the Mekong Basin could potentially compensate the increase in flood hazard and agriculture losses stemming from climate change. However, the benefits of dams as mitigation of flood losses are highly uncertain, because a) the actual development of the dams is highly disputed, b) the operation of the dams is primarily targeted at power generation, not flood control, and c) this would require international agreements and cooperation, which is difficult to achieve in South-East Asia. The theoretical flood mitigation benefit is additionally challenged by a number of negative impacts of the dam development, e.g. disruption of floodplain inundation in normal, non-extreme flood years. Adding to the certain reduction of sediment and nutrient load to the floodplains, hydropower dams will drastically impair rice and agriculture production, the basis livelihoods of million delta inhabitants. In conclusion, the VMD is expected to face increasing threats of tidal induced floods in the coming decades. Protection of the entire delta coastline solely with “hard” engineering flood protection structures is neither technically nor economically feasible, adaptation and mitigation actions are urgently required. Better control and reduction of groundwater abstraction is thus strongly recommended as an immediate and high priority action to reduce the land subsidence and thus tidal flooding and salinity intrusion in the delta. Hydropower development in the Mekong basin might offer some theoretical flood protection for the Mekong delta, but due to uncertainties in the operation of the dams and a number of negative effects, the dam development cannot be recommended as a strategy for flood management. For the Vietnamese authorities, it is advisable to properly maintain the existing flood protection structures and to develop flexible risk-based flood management plans. In this context the study showed that the high-dyke compartments can be utilized for emergency flood management in extreme events. For this purpose, a reliable flood forecast is essential, and the action plan should be materialised in official documents and legislation to assure commitment and consistency in the implementation and operation. N2 - Das Mekong-Delta im Süden Vietnams ist die Heimat von 18 Millionen Menschen. Im Delta werden mehr als die Hälfte der Nahrungsmittel des Landes und 80 % des exportierten Reises produziert. Aufgrund der geringen Höhen und Topographie ist das Delta sehr anfällig für Überflutungen, sowohl durch Fußhochwasser als auch durch gezeitenbedingte Rückstauüberflutungen. Obwohl extreme Überschwemmungen oft zu hohen Schäden und wirtschaftlichen Verlusten führen, ist der jährliche Hochwasserimpuls des Mekong lebenswichtig für die Aufrechterhaltung des landwirtschaftlichen Anbaus und des Lebensunterhalts von Millionen Deltabewohnern. Ein deltaweites Risikomanagement bestehend aus Hochwasserschutzmaßnahmen und Anpassungsstrategien ist erforderlich, um die negativen Auswirkungen von Extremereignissen zu mindern, zeitgleich aber auch die positiven Aspekte der Hochwasser beizubehalten. Ein Hochwasserrisikomanagement ist im VMD jedoch nicht implementiert, da die Quantifizierung von Hochwasserschäden typischerweise nicht vorgenommen wird. Bisher konzentriert sich das Hochwassermanagement ausschließlich auf ingenieurtechnische Maßnahmen zur Eindämmung der Gefährdung. Dies geschieht entweder durch Hoch- oder Niederdeichung, die auf eine hochwasserfreie oder teilweise Überflutungssteuerung abzielen. Eine risikobasierte Bewertung der Vor- und Nachteile zwischen Hoch- und Niederdeichansatz sowie Kosten-Nutzen-Rechnungen fehlen allerdings ebenfalls. Zudem ist zu erwarten, dass sich die Überschwemmungen Dynamik und das Hochwasserrisiko im Mekong Delta als Folge des Klimawandels und menschlicher Eingriffe in das Delta und das Mekong-Einzugsgebiet verändern werden. Die Analyse der zukünftigen Hochwasserdynamik in Abhängigkeit von diesen Stressoren ist notwendig, um den Übergang von einer alleinigen Gefahrenabwehr zu einem zukunftssicheren, probabilistischen Risikomanagement zu erleichtern. Ausgehend von diesen Forschungslücken untersucht diese Arbeit den aktuelle Hochwassergefährdung und die zu erwartenden zukünftigen Änderungen, sowie der damit einhergehenden Schäden und Risiken für den Reisanbau im Mekong Delta unter Berücksichtigung existierender und möglicher Hochwasserschutzmaßnahmen, des sich ändernden Klimas, des steigenden Meeresspiegels in Kombination mit der Landabsenkung des Deltas und der geplanten Staudämme im Mekong Einzugsgebiet. Eine Analyse der jährlichen Hochwasserpegel zeigte starke und robuste steigende Trends in den maximalen Wasserständen der Hochwasser und der Hochwasserdauer flussabwärts der Hochdeichgebiete, wobei eine sprunghafte Veränderung in den Jahren 2000/2001 nach. dem katastrophalen Hochwasser, das die Hochdeichentwicklung einleitete, festgestellt wurde. Diese Veränderungen stehen im Gegensatz zu den negativen Trends, oberstrom der Hocdeichgebiete, was darauf schließen lässt, dass die Hochdeichentwicklung die Hochwassergefahr flussabwärts verlagert hat. Die Ergebnisse der Trendanalyse wurden weiterhin durch hydraulische Simulationen der Überflutungsdynamiken der Hochwasser von 2000 und 2011 bestätigt. Allerdings waren die Hochdeiche nicht die Haupt- und einzige Ursache für den höheren Hochwasserpegel im Jahr 2011 im Vergleich zum Hochwasser im Jahr 2000. Die Hochwasserganglinie des Mekongs hatte den höchsten Beitrag im nördlichen Teil des Deltas oberstrom der Hochdeichgebiete, während der Tidenhub in den zentralen und küstennahen Gebieten stromabwärts des Hochdeichs einen 2-3 mal höheren Einfluss hatte als die Hochdeiche. Die wirtschaftlichen Verluste des Reisanbaus wurden rezent auf 25,0-115 Mio. USD geschätzt, für jeweils das 10- und 100-jährliche Hochwasser. Die Schäden sind hierbei sehr sensitiv gegenüber der Hochwasserganglinie, insbesondere dem Zeitpunkt des Auftretens des Hochwasserscheitels. Ein frühes 10-jährliches Hochwasser kann aufgrund des Zusammentreffens des Hochwassers mit der Ernte der Frühjahrsaussaat oder der Aussaat der Sommerfrucht ähnliche Verluste verursachen wie ein 100-jährliches Ereignis, das im Oktober seinen Höhepunkt erreicht. Neben dem Anbau einer dritten Frucht im Jahr könnten die existierenden Hochdeichabschnitte als Hochwasserrückhalteräume genutzt werden und so die Hochwassergefahr und die zu erwartenden Schäden um 5-40% reduzieren. Umgekehrt würde ein weiterer Ausbau der Hochdeiche die derzeit erwarteten jährlichen Hochwasserschäden verdreifachen. Die Zukunftsprojektionen des Hochwasserrisikos ergaben, dass das Mekong Delta in den nächsten Jahrzehnten zunehmend von tidebedingten Überschwemmungen bedroht sein wird. Der Anstieg des Meeresspiegels in Kombination mit der Landabsenkung erhöht das Ausmaß der Überflutung des Deltas um 20% und den Schaden an der Reisernte um 40-85 Mio. USD. Technische Hochwasserschutzmaßnahmen können diesen Anstieg des Risikos nicht verhindern, da der Schutz des gesamten Deltas allein durch harte Hochwasserschutzbauten technisch und wirtschaftlich nicht realisierbar ist. Daher sind Maßnahmen zur Schadensminderung und zur Anpassung an das veränderte Risiko dringend erforderlich. Als erster und wichtiger Schritt wird hier eine bessere Kontrolle und Reduzierung der Grundwasserentnahme im Delta dringend empfohlen, um die Landabsenkung und dadurch die tidenbedingten Überflutungen sowie die Salzwasserintrusion zu verringern. Der Klimawandel und die daraus resultierenden Veränderungen im Hochwasserregime des Mekong verursachen eine weitere, aber geringere Erhöhung des Hochwasserrisikos. Die geplanten Staudämme im Mekong Einzugsgebiet könnten die Zunahme der Hochwassergefahr und der landwirtschaftlichen Verluste aufgrund des Klimawandels in extremen Hochwasserjahren zumindest theoretisch abmildern. Der Nutzen von Dämmen zur Minderung des Hochwasserrisikos ist jedoch ungewiss, da die Realisierung der geplanten Dämme sehr umstritten und damit unsicher ist. Weiterhin spielt das Management der Staudämme eine wichtige Rolle für die Hochwasserregulierung. Da die Dämme in erste Linie zur Stromerzeugung gebaut werden, ist der Hochwasserschutz der unterliegenden Anrainerstaaten eher von untergeordneter Bedeutung. Für Vietnam bedeutet das, dass eine ordnungsgemäße Instandhaltung von Deichen und Hochwasserschutzbauten eine hohe Priorität haben sollte, um Abhängigkeiten von den Nachbarstaaten zu vermeiden. Weiterhin ist die Entwicklung von „weichen“ Hochwasserschutzmaßnahmen und -plänen dringend notwendig, da ein alleiniger Schutz durch technische Maßnahmen unmöglich ist. Aufgrund der in dieser Arbeit erzielten Ergebnisse wird daher empfohlen, die Hochdeichkompartimente für das Notfall-Hochwassermanagement bei Extremereignissen zu nutzen. Zu diesem Zweck ist eine verlässliche Hochwasservorhersage unerlässlich, und der Aktionsplan sollte in offiziellen Dokumenten und Gesetzen festgehalten werden, um die Verbindlichkeit und konsequente Umsetzung sicherzustellen. KW - Mekong Delta KW - flood hazard KW - flood risk KW - climate change KW - Mekong Delta KW - Klimawandel KW - Hochwassergefahr KW - Hochwasserrisiko Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-512830 ER - TY - JOUR A1 - Mtilatila, Lucy Mphatso Ng'ombe A1 - Bronstert, Axel A1 - Vormoor, Klaus Josef T1 - Temporal evaluation and projections of meteorological droughts in the Greater Lake Malawi Basin, Southeast Africa JF - Frontiers in water N2 - The study examined the potential future changes of drought characteristics in the Greater Lake Malawi Basin in Southeast Africa. This region strongly depends on water resources to generate electricity and food. Future projections (considering both moderate and high emission scenarios) of temperature and precipitation from an ensemble of 16 bias-corrected climate model combinations were blended with a scenario-neutral response surface approach to analyses changes in: (i) the meteorological conditions, (ii) the meteorological water balance, and (iii) selected drought characteristics such as drought intensity, drought months, and drought events, which were derived from the Standardized Precipitation and Evapotranspiration Index. Changes were analyzed for a near-term (2021-2050) and far-term period (2071-2100) with reference to 1976-2005. The effect of bias-correction (i.e., empirical quantile mapping) on the ability of the climate model ensemble to reproduce observed drought characteristics as compared to raw climate projections was also investigated. Results suggest that the bias-correction improves the climate models in terms of reproducing temperature and precipitation statistics but not drought characteristics. Still, despite the differences in the internal structures and uncertainties that exist among the climate models, they all agree on an increase of meteorological droughts in the future in terms of higher drought intensity and longer events. Drought intensity is projected to increase between +25 and +50% during 2021-2050 and between +131 and +388% during 2071-2100. This translates into +3 to +5, and +7 to +8 more drought months per year during both periods, respectively. With longer lasting drought events, the number of drought events decreases. Projected droughts based on the high emission scenario are 1.7 times more severe than droughts based on the moderate scenario. That means that droughts in this region will likely become more severe in the coming decades. Despite the inherent high uncertainties of climate projections, the results provide a basis in planning and (water-)managing activities for climate change adaptation measures in Malawi. This is of particular relevance for water management issues referring hydro power generation and food production, both for rain-fed and irrigated agriculture. KW - meteorological drought KW - drought intensity KW - climate change KW - drought KW - events KW - Lake Malawi KW - Shire River KW - drought projections KW - South-Eastern KW - Africa Y1 - 2022 U6 - https://doi.org/10.3389/frwa.2022.1041452 SN - 2624-9375 VL - 4 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Mtilatila, Lucy Mphatso Ng'ombe A1 - Bronstert, Axel A1 - Vormoor, Klaus Josef T1 - Temporal evaluation and projections of meteorological droughts in the Greater Lake Malawi Basin, Southeast Africa JF - Frontiers in Water N2 - The study examined the potential future changes of drought characteristics in the Greater Lake Malawi Basin in Southeast Africa. This region strongly depends on water resources to generate electricity and food. Future projections (considering both moderate and high emission scenarios) of temperature and precipitation from an ensemble of 16 bias-corrected climate model combinations were blended with a scenario-neutral response surface approach to analyses changes in: (i) the meteorological conditions, (ii) the meteorological water balance, and (iii) selected drought characteristics such as drought intensity, drought months, and drought events, which were derived from the Standardized Precipitation and Evapotranspiration Index. Changes were analyzed for a near-term (2021–2050) and far-term period (2071–2100) with reference to 1976–2005. The effect of bias-correction (i.e., empirical quantile mapping) on the ability of the climate model ensemble to reproduce observed drought characteristics as compared to raw climate projections was also investigated. Results suggest that the bias-correction improves the climate models in terms of reproducing temperature and precipitation statistics but not drought characteristics. Still, despite the differences in the internal structures and uncertainties that exist among the climate models, they all agree on an increase of meteorological droughts in the future in terms of higher drought intensity and longer events. Drought intensity is projected to increase between +25 and +50% during 2021–2050 and between +131 and +388% during 2071–2100. This translates into +3 to +5, and +7 to +8 more drought months per year during both periods, respectively. With longer lasting drought events, the number of drought events decreases. Projected droughts based on the high emission scenario are 1.7 times more severe than droughts based on the moderate scenario. That means that droughts in this region will likely become more severe in the coming decades. Despite the inherent high uncertainties of climate projections, the results provide a basis in planning and (water-)managing activities for climate change adaptation measures in Malawi. This is of particular relevance for water management issues referring hydro power generation and food production, both for rain-fed and irrigated agriculture. KW - meteorological drought KW - drought intensity KW - climate change KW - drought events KW - Lake Malawi KW - Shire River KW - drought projections KW - South-Eastern Africa Y1 - 2022 U6 - https://doi.org/10.3389/frwa.2022.1041452 SN - 2624-9375 SP - 1 EP - 16 PB - Frontiers Media S.A. CY - Lausanne, Schweiz ER - TY - GEN A1 - Mtilatila, Lucy Mphatso Ng'ombe A1 - Bronstert, Axel A1 - Vormoor, Klaus Josef T1 - Temporal evaluation and projections of meteorological droughts in the Greater Lake Malawi Basin, Southeast Africa T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The study examined the potential future changes of drought characteristics in the Greater Lake Malawi Basin in Southeast Africa. This region strongly depends on water resources to generate electricity and food. Future projections (considering both moderate and high emission scenarios) of temperature and precipitation from an ensemble of 16 bias-corrected climate model combinations were blended with a scenario-neutral response surface approach to analyses changes in: (i) the meteorological conditions, (ii) the meteorological water balance, and (iii) selected drought characteristics such as drought intensity, drought months, and drought events, which were derived from the Standardized Precipitation and Evapotranspiration Index. Changes were analyzed for a near-term (2021–2050) and far-term period (2071–2100) with reference to 1976–2005. The effect of bias-correction (i.e., empirical quantile mapping) on the ability of the climate model ensemble to reproduce observed drought characteristics as compared to raw climate projections was also investigated. Results suggest that the bias-correction improves the climate models in terms of reproducing temperature and precipitation statistics but not drought characteristics. Still, despite the differences in the internal structures and uncertainties that exist among the climate models, they all agree on an increase of meteorological droughts in the future in terms of higher drought intensity and longer events. Drought intensity is projected to increase between +25 and +50% during 2021–2050 and between +131 and +388% during 2071–2100. This translates into +3 to +5, and +7 to +8 more drought months per year during both periods, respectively. With longer lasting drought events, the number of drought events decreases. Projected droughts based on the high emission scenario are 1.7 times more severe than droughts based on the moderate scenario. That means that droughts in this region will likely become more severe in the coming decades. Despite the inherent high uncertainties of climate projections, the results provide a basis in planning and (water-)managing activities for climate change adaptation measures in Malawi. This is of particular relevance for water management issues referring hydro power generation and food production, both for rain-fed and irrigated agriculture. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1287 KW - meteorological drought KW - drought intensity KW - climate change KW - drought events KW - Lake Malawi KW - Shire River KW - drought projections KW - South-Eastern Africa Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-571284 SN - 1866-8372 IS - 1287 ER - TY - THES A1 - Mtilatila, Lucy Mphatso Ng'ombe T1 - Climate change effects on drought, freshwater availability and hydro-power generation in an African environment T1 - Auswirkungen des Klimawandels auf Dürre, Wasserverfügbarkeit und Wasserkrafterzeugung in einer tropischen afrikanischen Region BT - observations and projections for the Lake Malawi and Shire River Basins in Malawi BT - Datenanalysen und Projektionen für die Einzugsgebiete des Malawi-Sees und des Shire-Flusses in Malawi N2 - The work is designed to investigate the impacts and sensitivity of climate change on water resources, droughts and hydropower production in Malawi, the South-Eastern region which is highly vulnerable to climate change. It is observed that rainfall is decreasing and temperature is increasing which calls for the understanding of what these changes may impact the water resources, drought occurrences and hydropower generation in the region. The study is conducted in the Greater Lake Malawi Basin (Lake Malawi and Shire River Basins) and is divided into three projects. The first study is assessing the variability and trends of both meteorological and hydrological droughts from 1970-2013 in Lake Malawi and Shire River basins using the standardized precipitation index (SPI) and standardized precipitation and evaporation Index (SPEI) for meteorological droughts and the lake level change index (LLCI) for hydrological droughts. And later the relationship of the meteorological and hydrological droughts is established. While the second study extends the drought analysis into the future by examining the potential future meteorological water balance and associated drought characteristics such as the drought intensity (DI), drought months (DM), and drought events (DE) in the Greater Lake Malawi Basin. The sensitivity of drought to changes of rainfall and temperature is also assessed using the scenario-neutral approach. The climate change projections from 20 Coordinated Regional Climate Downscaling Experiment (CORDEX) models for Africa based on two scenarios (RCP4.5 and RCP8.5) for the periods 2021–2050 and 2071–2100 are used. The study also investigates the effect of bias-correction (i.e., empirical quantile mapping) on the ability of the climate model ensemble in reproducing observed drought characteristics as compared to raw climate projections. The sensitivity of key hydrologic variables and hydropower generation to climate change in Lake Malawi and Shire River basins is assessed in third study. The study adapts the mesoscale Hydrological Model (mHM) which is applied separately in the Upper Lake Malawi and Shire River basins. A particular Lake Malawi model, which focuses on reservoir routing and lake water balance, has been developed and is interlinked between the two basins. Similar to second study, the scenario-neutral approach is also applied to determine the sensitivity of climate change on water resources more particularly Lake Malawi level and Shire River flow which later helps to estimate the hydropower production susceptibility. Results suggest that meteorological droughts are increasing due to a decrease in precipitation which is exacerbated by an increase in temperature (potential evapotranspiration). The hydrological system of Lake Malawi seems to have a >24-month memory towards meteorological conditions since the 36-months SPEI can predict hydrological droughts ten-months in advance. The study has found the critical lake level that would trigger hydrological drought to be 474.1 m.a.s.l. Despite the differences in the internal structures and uncertainties that exist among the climate models, they all agree on an increase of meteorological droughts in the future in terms of higher DI and longer events (DM). DI is projected to increase between +25% and +50% during 2021-2050 and between +131% and +388% during 2071-2100. This translates into +3 to +5, and +7 to +8 more drought months per year during both periods, respectively. With longer lasting drought events, DE is decreasing. Projected droughts based on RCP8.5 are 1.7 times more severe than droughts based on RCP4.5. It is also found that an annual temperature increase of 1°C decreases mean lake level and outflow by 0.3 m and 17%, respectively, signifying the importance of intensified evaporation for Lake Malawi’s water budget. Meanwhile, a +5% (-5%) deviation in annual rainfall changes mean lake level by +0.7 m (-0.6 m). The combined effects of temperature increase and rainfall decrease result in significantly lower flows on Shire River. The hydrological river regime may change from perennial to seasonal with the combination of annual temperature increase and precipitation decrease beyond 1.5°C (3.5°C) and -20% (-15%). The study further projects a reduction in annual hydropower production between 1% (RCP8.5) and 2.5% (RCP4.5) during 2021–2050 and between 5% (RCP4.5) and 24% (RCP8.5) during 2071–2100. The findings are later linked to global policies more particularly the United Nations Framework Convention on Climate Change (UNFCCC)’s Paris Agreement and the United Nations (UN)’s Sustainable Development Goals (SDGs), and how the failure to adhere the restriction of temperature increase below the global limit of 1.5°C will affect drought and the water resources in Malawi consequently impact the hydropower production. As a result, the achievement of most of the SDGs will be compromised. The results show that it is of great importance that a further development of hydro energy on the Shire River should take into account the effects of climate change. The information generation is important for decision making more especially supporting the climate action required to fight against climate change. The frequency of extreme climate events due to climate change has reached the climate emergency as saving lives and livelihoods require urgent action. N2 - Ziel der Arbeit ist es, die Auswirkungen und die Sensitivität des Klimawandels auf die Wasser¬ressourcen, Dürren und die Wasserkrafterzeugung in Malawi zu untersuchen, einer Region im Südosten Afrikas, die besonders anfällig für den Klimawandel ist. Es ist zu beobachten, dass die Niederschläge abnehmen und die Temperaturen steigen, was Untersuchungen nahelegt, inwiefern sich diese Veränderungen auf die Wasserressourcen, Dürren und die Wasserkraft¬erzeugung in der Region auswirken können. Die Studie wird im Flussgebiet des Malawi-Sees (Einzugsgebiet des Malawi-Sees und des Shire-Flusses) durchgeführt und ist in drei Projekte unterteilt. In der ersten Studie werden die Variabilität und die Trends von meteorologischen und hydrologischen Dürren im Zeitraum 1970-2013 im Malawi-See- und Shire-Flusseinzugs¬gebiet anhand des standardisierten Niederschlagsindexes (SPI) und des standardisierten Niederschlags- und Verdunstungsindexes (SPEI) für meteorologische Dürren und des Indexes für die Veränderung des Seespiegels (LLCI) für hydrologische Dürren untersucht. Anschließend wird der Zusammenhang zwischen meteorologischen und hydrologischen Dürren hergestellt. In der zweiten Studie wird die Dürreanalyse in die Zukunft ausgedehnt, indem die potenzielle künftige meteorologische Wasserbilanz und die damit verbundenen Dürremerkmale wie Dürre¬intensität (DI), Dürremonate (DM) und Dürreereignisse (DE) im Einzugsgebiet des Malawisees untersucht werden. Die Empfindlichkeit der Dürre gegenüber Veränderungen der Nieder¬schlags¬menge und der Temperatur wird anhand des „Szenario-neutralen“ Ansatzes bewertet. Es werden die Projektionen des Klimawandels aus 20 „Coordinated Regional Climate Downscaling Experiment“ Modellen für Afrika auf der Grundlage von zwei Szenarien (RCP4.5 und RCP8.5) für die Zeiträume 2021-2050 und 2071-2100 verwendet. Die Studie untersucht auch die Auswirkung der Fehlerkorrektur (via „empirical quantile mapping) auf die Möglichkeit des Klimamodell-Ensembles, beobachtete Dürrecharakteristika im Vergleich zu den Originaldaten der Klimaprojektionen wieder¬zugeben. In der dritten Studie wird die Sensitivität der wichtigsten hydrologischen Variablen und der Wasserkrafterzeugung auf den Klimawandel in den Einzugsgebieten des Malawi-Sees und des Shire-Flusses untersucht. In der Studie wird das meso-skalige hydrologische Modell (mHM) angepasst, welches in den Einzugsgebieten des Malawisees und des Shire-Flusses getrennt angewendet wird. Ein spezielles Modell für den Malawisee, welches sich auf die Wellenver¬formung im See und dessen Wasserbilanz, wurde entwickelt und wurde mit den beiden Einzugsgebieten gekoppelt. Ähnlich wie in der zweiten Studie wird auch hier der Szenario-neutrale Ansatz angewandt, um die Sensitivität des Klimawandels auf die Wasserressourcen zu bestimmen, insbesondere auf den Wasserstand im Malawisee und den Durchfluss des Shire-Flusses, was später zur Abschätzung der Anfälligkeit der Wasserkraft-produktion nötig ist. Die Ergebnisse lassen erwarten, dass meteorologische Dürren aufgrund von Niederschlags-rückgang zunehmen, was durch einen Temperaturanstieg (und dadurch erhöhte Verdunstung) noch verschärft wird. Das hydrologische System des Malawi-Sees scheint ein >24-monatiges „meteorologisches Gedächtnis“ zu haben, da mit den 36-monatigen SPEI-Indizes, hydrologische Dürren zehn Monate im Voraus vorhersagbar sind. Die Studie ergab zudem, dass der kritische Seespiegel zur Auslösung hydrologische Dürren bei 474,1 m+NN liegt. Trotz der Unterschiede in internen Strukturen und Unsicherheiten der verschiedenen Klimamodelle, stimmen sie darin überein, dass meteorologische Dürren in der Zukunft in Form von höheren DI und längeren Ereignissen (DM) zunehmen werden. Die DI würde im Zeitraum 2021-2050 um +25 % bis +50 % und im Zeitraum 2071-2100 um +131 % bis +388 % zunehmen. Dies bedeutet 3 bis 5 bzw. 7 bis 8 Dürremonate mehr pro Jahr in beiden Zeiträumen. Bei länger anhaltenden Dürreereignissen nehmen die DE ab. Die prognostizierten Dürren auf der Grundlage des RCP8.5 sind 1,7-mal schwerer als die Dürren auf der Grundlage des RCP4.5. Es wird auch festgestellt, dass ein jährlicher Temperaturanstieg von 1°C den mittleren See-spiegel und den Abfluss um 0,3 m bzw. 17 % verringert, was auf die Bedeutung einer verstärk¬ten Verdunstung für den Wasserhaushalt des Malawisees hinweist. Eine Abweichung von +5 % (-5 %) bei den jährlichen Niederschlägen verändert den mittleren Seespiegel um +0,7 m (-0,6 m). Die kombinierten Auswir¬kungen des Temperaturanstiegs und des Niederschlagsrück¬gangs führen zu einem deutlich geringeren Durchfluss im Shire River. Das hydrologische Regime des Flusses kann sich bei einer Kombination aus jährlicher Temperaturerhöhung und Niederschlagsabnahme um mehr als 1,5°C (3,5°C) und -20% (-15%) von mehrjährig zu saisonal ändern. Die Studie prognostiziert ferner einen Rückgang der jährlichen Wasserkraft¬produktion zwischen 1 % (RCP8.5) und 2,5 % (RCP4.5) im Zeitraum 2021-2050 und zwischen 5 % (RCP4.5) und 24 % (RCP8.5) im Zeitraum 2071-2100. Die Ergebnisse werden letztlich mit der globalen Politik in Verbindung gebracht, insbesondere mit dem Pariser Abkommen des Rahmenübereinkommens der Vereinten Nationen über Klima-änderungen (UNFCCC) und den Zielen für nachhaltige Entwicklung (SDGs) der Vereinten Nationen (UN). Zudem damit, wie sich die Nichteinhaltung der Begrenzung des Temperatur-anstiegs auf 1,5°C auf die Dürre und die Wasserressourcen in Malawi auswirken wird, was wiederum Auswirkungen auf die Wasserkraftproduktion hat. Infolgedessen wird die Erreichung der meisten SDGs gefährdet sein. Die Ergebnisse zeigen, dass es von großer Bedeutung ist, dass bei der weiteren Entwicklung der Wasserkraft am Shire River die Auswirkungen des Klimawandels berücksichtigt werden sollten. Die Generierung von Informationen ist wichtig für die Entscheidungsfindung, insbesondere für die Unterstützung von Klimaschutzmaßnahmen, die zur Bekämpfung des Klimawandels erforderlich sind. Die Häufigkeit extremer Klimaereignisse aufgrund des Klimawandels hat einen kritischen Punkt erreicht, so dass die Rettung von Leben und die Bewahrung der Lebensgrundlagen dringende Maßnahmen erfordert. KW - climate change KW - Klimaänderung KW - Malawi KW - water balance KW - Wasserbilanz KW - drought KW - Dürre KW - water resources KW - Wasserressourcen Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-599298 ER - TY - GEN A1 - Metin, Ayse Duha A1 - Dung, Nguyen Viet A1 - Schröter, Kai A1 - Guse, Björn A1 - Apel, Heiko A1 - Kreibich, Heidi A1 - Vorogushyn, Sergiy A1 - Merz, Bruno T1 - How do changes along the risk chain affect flood risk? T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Flood risk is impacted by a range of physical and socio-economic processes. Hence, the quantification of flood risk ideally considers the complete flood risk chain, from atmospheric processes through catchment and river system processes to damage mechanisms in the affected areas. Although it is generally accepted that a multitude of changes along the risk chain can occur and impact flood risk, there is a lack of knowledge of how and to what extent changes in influencing factors propagate through the chain and finally affect flood risk. To fill this gap, we present a comprehensive sensitivity analysis which considers changes in all risk components, i.e. changes in climate, catchment, river system, land use, assets, and vulnerability. The application of this framework to the mesoscale Mulde catchment in Germany shows that flood risk can vary dramatically as a consequence of plausible change scenarios. It further reveals that components that have not received much attention, such as changes in dike systems or in vulnerability, may outweigh changes in often investigated components, such as climate. Although the specific results are conditional on the case study area and the selected assumptions, they emphasize the need for a broader consideration of potential drivers of change in a comprehensive way. Hence, our approach contributes to a better understanding of how the different risk components influence the overall flood risk. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1067 KW - global sensitivity analysis KW - climate change KW - river floods KW - frequency KW - Europe KW - model KW - vulnerability KW - adaptation KW - strategies KW - catchment Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-468790 SN - 1866-8372 IS - 1067 ER - TY - JOUR A1 - Meißl, Gertraud A1 - Formayer, Herbert A1 - Klebinder, Klaus A1 - Kerl, Florian A1 - Schöberl, Friedrich A1 - Geitner, Clemens A1 - Markart, Gerhard A1 - Leidinger, David A1 - Bronstert, Axel T1 - Climate change effects on hydrological system conditions influencing generation of storm runoff in small Alpine catchments JF - Hydrological processes : an international journal N2 - Floods and debris flows in small Alpine torrent catchments (<10km(2)) arise from a combination of critical antecedent system state conditions and mostly convective precipitation events with high precipitation intensities. Thus, climate change may influence the magnitude-frequency relationship of extreme events twofold: by a modification of the occurrence probabilities of critical hydrological system conditions and by a change of event precipitation characteristics. Three small Alpine catchments in different altitudes in Western Austria (Ruggbach, Brixenbach and Langentalbach catchment) were investigated by both field experiments and process-based simulation. Rainfall-runoff model (HQsim) runs driven by localized climate scenarios (CNRM-RM4.5/ARPEGE, MPI-REMO/ECHAM5 and ICTP-RegCM3/ECHAM5) were used in order to estimate future frequencies of stormflow triggering system state conditions. According to the differing altitudes of the study catchments, two effects of climate change on the hydrological systems can be observed. On one hand, the seasonal system state conditions of medium altitude catchments are most strongly affected by air temperature-controlled processes such as the development of the winter snow cover as well as evapotranspiration. On the other hand, the unglaciated high-altitude catchment is less sensitive to climate change-induced shifts regarding days with critical antecedent soil moisture and desiccated litter layer due to its elevation-related small proportion of sensitive areas. For the period 2071-2100, the number of days with critical antecedent soil moisture content will be significantly reduced to about 60% or even less in summer in all catchments. In contrast, the number of days with dried-out litter layers causing hydrophobic effects will increase by up to 8%-11% of the days in the two lower altitude catchments. The intensity analyses of heavy precipitation events indicate a clear increase in rain intensities of up to 10%. KW - climate change KW - hydrophobic effects KW - small Alpine catchments KW - soil moisture KW - storm runoff events KW - system conditions Y1 - 2016 U6 - https://doi.org/10.1002/hyp.11104 SN - 0885-6087 SN - 1099-1085 VL - 31 IS - 6 SP - 1314 EP - 1330 PB - Wiley CY - New York ER - TY - THES A1 - Krummenauer, Linda T1 - Global heat adaptation among urban populations and its evolution under different climate futures T1 - Globale Hitzeanpassung urbaner Bevölkerungen und deren Entwicklung unter verschiedenen klimatischen Zukünften N2 - Heat and increasing ambient temperatures under climate change represent a serious threat to human health in cities. Heat exposure has been studied extensively at a global scale. Studies comparing a defined temperature threshold with the future daytime temperature during a certain period of time, had concluded an increase in threat to human health. Such findings however do not explicitly account for possible changes in future human heat adaptation and might even overestimate heat exposure. Thus, heat adaptation and its development is still unclear. Human heat adaptation refers to the local temperature to which populations are adjusted to. It can be inferred from the lowest point of the U- or V-shaped heat-mortality relationship (HMR), the Minimum Mortality Temperature (MMT). While epidemiological studies inform on the MMT at the city scale for case studies, a general model applicable at the global scale to infer on temporal change in MMTs had not yet been realised. The conventional approach depends on data availability, their robustness, and on the access to daily mortality records at the city scale. Thorough analysis however must account for future changes in the MMT as heat adaptation happens partially passively. Human heat adaptation consists of two aspects: (1) the intensity of the heat hazard that is still tolerated by human populations, meaning the heat burden they can bear and (2) the wealth-induced technological, social and behavioural measures that can be employed to avoid heat exposure. The objective of this thesis is to investigate and quantify human heat adaptation among urban populations at a global scale under the current climate and to project future adaptation under climate change until the end of the century. To date, this has not yet been accomplished. The evaluation of global heat adaptation among urban populations and its evolution under climate change comprises three levels of analysis. First, using the example of Germany, the MMT is calculated at the city level by applying the conventional method. Second, this thesis compiles a data pool of 400 urban MMTs to develop and train a new model capable of estimating MMTs on the basis of physical and socio-economic city characteristics using multivariate non-linear multivariate regression. The MMT is successfully described as a function of the current climate, the topography and the socio-economic standard, independently of daily mortality data for cities around the world. The city-specific MMT estimates represents a measure of human heat adaptation among the urban population. In a final third analysis, the model to derive human heat adaptation was adjusted to be driven by projected climate and socio-economic variables for the future. This allowed for estimation of the MMT and its change for 3 820 cities worldwide for different combinations of climate trajectories and socio-economic pathways until 2100. The knowledge on the evolution of heat adaptation in the future is a novelty as mostly heat exposure and its future development had been researched. In this work, changes in heat adaptation and exposure were analysed jointly. A wide range of possible health-related outcomes up to 2100 was the result, of which two scenarios with the highest socio-economic developments but opposing strong warming levels were highlighted for comparison. Strong economic growth based upon fossil fuel exploitation is associated with a high gain in heat adaptation, but may not be able to compensate for the associated negative health effects due to increased heat exposure in 30% to 40% of the cities investigated caused by severe climate change. A slightly less strong, but sustainable growth brings moderate gains in heat adaptation but a lower heat exposure and exposure reductions in 80% to 84% of the cities in terms of frequency (number of days exceeding the MMT) and intensity (magnitude of the MMT exceedance) due to a milder global warming. Choosing a 2 ° C compatible development by 2100 would therefore lower the risk of heat-related mortality at the end of the century. In summary, this thesis makes diverse and multidisciplinary contributions to a deeper understanding of human adaptation to heat under the current and the future climate. It is one of the first studies to carry out a systematic and statistical analysis of urban characteristics which are useful as MMT drivers to establish a generalised model of human heat adaptation, applicable at the global level. A broad range of possible heat-related health options for various future scenarios was shown for the first time. This work is of relevance for the assessment of heat-health impacts in regions where mortality data are not accessible or missing. The results are useful for health care planning at the meso- and macro-level and to urban- and climate change adaptation planning. Lastly, beyond having met the posed objective, this thesis advances research towards a global future impact assessment of heat on human health by providing an alternative method of MMT estimation, that is spatially and temporally flexible in its application. N2 - Hitze und steigende Umgebungstemperaturen im Zuge des Klimawandels stellen eine ernsthafte Bedrohung für die menschliche Gesundheit in Städten dar. Die Hitzeexposition wurde umfassend auf globaler Ebene untersucht. Studien, die eine definierte Temperaturschwelle mit der zukünftigen Tagestemperatur während eines bestimmten Zeitraums verglichen, hatten eine Zunahme der Gefährdung der menschlichen Gesundheit ergeben. Solche Ergebnisse berücksichtigen jedoch nicht explizit mögliche Veränderungen der zukünftigen menschlichen Hitzeadaption und könnten daher sogar die Hitzeexposition überschätzen. Somit ist die menschliche Adaption an Hitze und ihre zukünftige Entwicklung noch unklar. Die menschliche Hitzeadaption bezieht sich auf die lokale Temperatur, an die sich die Bevölkerung angepasst hat. Sie lässt sich aus dem Tiefpunkt der U- oder V-förmigen Relation zwischen Hitze und Mortalität (HMR), der Mortalitätsminimaltemperatur (MMT), ableiten. Während epidemiologische Fallstudien über die MMT auf Stadtebene informieren, wurde ein auf globaler Ebene anwendbares allgemeines Modell, um auf die zeitliche Veränderung der MMTs zu schließen, bisher noch nicht realisiert. Der konventionelle Ansatz ist abhängig von der Datenverfügbarkeit, ihrer Robustheit und dem Zugang zu täglichen Mortalitätsdaten auf Stadtebene. Eine gründliche Analyse muss jedoch zukünftige Veränderungen in der MMT berücksichtigen, da die menschliche Hitzeanpassung teils passiv erfolgt. Die menschliche Hitzeanpassung besteht aus zwei Aspekten: (1) aus der Intensität der Hitze, die von der menschlichen Bevölkerung noch toleriert wird, also die Hitzebelastung, die sie ertragen kann, und (2) aus vermögensbedingten technologischen, sozialen und verhaltensbezogenen Maßnahmen, die zur Vermeidung von Hitzeexposition eingesetzt werden können. Das Ziel dieser Arbeit ist es, die menschliche Hitzeanpassung der städtischen Bevölkerung unter dem aktuellen Klima auf globaler Ebene zu untersuchen und zu quantifizieren und die zukünftige Anpassung an den Klimawandel bis zum Ende des Jahrhunderts zu projizieren. Dies wurde bis heute noch nicht erreicht. Die Bewertung der globalen Hitzeanpassung städtischer Bevölkerungen und ihrer Entwicklung unter dem Klimawandel umfasst drei Analyseebenen. Erstens wird am Beispiel Deutschlands die MMT auf Stadtebene nach der konventionellen Methode berechnet. Zweitens trägt diese Arbeit einen Datenpool von 400 städtischen MMTs zusammen, um auf dessen Basis ein neues Modell zu entwickeln und zu trainieren, welches in der Lage ist, MMTs auf der Grundlage von physischen und sozioökonomischen Stadtmerkmalen mittels multivariater nichtlinearer multivariater Regression zu schätzen. Es wird gezeigt, dass die MMT als Funktion des aktuellen Klimas, der Topographie und des sozioökonomischen Standards beschrieben werden kann, unabhängig von täglichen Sterblichkeitsdaten für Städte auf der ganzen Welt. Die stadtspezifischen MMT-Schätzungen stellen ein Maß für die menschliche Hitzeanpassung der städtischen Bevölkerung dar. In einer letzten dritten Analyse wurde das Modell zur Schätzung der menschlichen Hitzeadaption angepasst, um von für die Zukunft projizierten Klima- und sozioökonomischen Variablen angetrieben zu werden. Dies ermöglichte eine Schätzung des MMT und seiner Veränderung für 3 820 Städte weltweit für verschiedene Kombinationen aus Klimatrajektorien und sozioökonomischen Entwicklungspfaden bis 2100. Das Wissen über die Entwicklung der menschlichen Hitzeanpassung in der Zukunft ist ein Novum, da bisher hauptsächlich die Hitzeexposition und ihre zukünftige Entwicklung erforscht wurden. In dieser Arbeit wurden die Veränderungen der menschlichen Hitzeadaptation und der Hitzeexposition gemeinsam analysiert. Das Ergebnis ist ein breites Spektrum möglicher gesundheitsbezogener Zukünfte bis 2100, von denen zum Vergleich zwei Szenarienkombinationen mit den höchsten sozioökonomischen Entwicklungen, aber gegensätzlichen starken Erwärmungsniveaus hervorgehoben wurden. Ein starkes Wirtschaftswachstum auf der Grundlage der Nutzung fossiler Brennstoffe fördert zwar einen hohen Zugewinn an Hitzeanpassung, kann jedoch die damit verbundenen negativen gesundheitlichen Auswirkungen aufgrund der erhöhten Exposition in rund 30% bis 40% der untersuchten Städte aufgrund eines starken Klimawandels möglicherweise nicht ausgleichen. Ein etwas weniger starkes, dafür aber nachhaltiges Wachstum bringt aufgrund einer milderen globalen Erwärmung eine moderate Hitzeanpassung und eine geringere Hitzeexposition und sogar eine Abnahme der Exposition in 80% bis 84% der Städte in Bezug auf Häufigkeit (Anzahl der Tage über der MMT) und Intensität (Magnitude der MMT-Überschreitung). Die Wahl einer 2 ° C-kompatiblen Entwicklung bis 2100 würde daher das Risiko einer hitzebedingten Sterblichkeit am Ende des Jahrhunderts senken. Zusammenfassend liefert diese Dissertation vielfältige und multidisziplinäre Beiträge zu einem tieferen Verständnis der menschlichen Hitzeanpassung unter dem gegenwärtigen und zukünftigen Klima. Es ist eine der ersten Studien, die eine systematische und statistische Analyse städtischer Merkmale durchführt, die sich als MMT-Treiber verwenden lassen, um ein verallgemeinertes Modell der menschlichen Hitzeanpassung zu erarbeiten, das auf globaler Ebene anwendbar ist. Erstmals wurde ein breites Spektrum möglicher hitzebedingter Gesundheitsoptionen für verschiedene Zukunftsszenarien aufgezeigt. Diese Arbeit ist von Bedeutung für die Bewertung von hitzebezogener Gesundheitsauswirkungen in Regionen, in denen Mortalitätsdaten nicht zugänglich sind oder fehlen. Die Ergebnisse sind nützlich für die Gesundheitsplanung auf Meso- und Makroebene sowie für die Stadtplanung und die Planung der Anpassung an den Klimawandel. Über das Erreichen des gestellten Ziels hinaus treibt diese Dissertation die Forschung in Richtung einer globalen zukünftigen Folgenabschätzung von Hitze auf die menschliche Gesundheit voran, indem eine alternative Methode der MMT-Schätzung bereitgestellt wird, die in ihrer Anwendung räumlich und zeitlich flexibel ist. KW - heat KW - adaptation KW - global KW - populations KW - climate change KW - temperature KW - mortality KW - minimum mortality temperature KW - projection KW - future KW - health KW - model KW - socio-economy KW - wealth KW - acclimatisation KW - Akklimatisierung KW - Anpassung KW - Hitzeanpassung KW - Klimawandel KW - Zukunft KW - global KW - Gesundheit KW - Hitze KW - Mortalitäts-Minimal-Temperatur KW - Modell KW - Mortalität KW - Bevölkerung KW - Projektion KW - Sozioökonomie KW - Temperatur KW - Wohlstand KW - exposure KW - hazard KW - cities KW - Exposition KW - Naturgefahr KW - Städte Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-559294 ER - TY - JOUR A1 - Kong, Xiangzhen A1 - Ghaffar, Salman A1 - Determann, Maria A1 - Friese, Kurt A1 - Jomaa, Seifeddine A1 - Mi, Chenxi A1 - Shatwell, Tom A1 - Rinke, Karsten A1 - Rode, Michael T1 - Reservoir water quality deterioration due to deforestation emphasizes the indirect effects of global change JF - Water research : a journal of the International Association on Water Quality (IAWQ) N2 - Deforestation is currently a widespread phenomenon and a growing environmental concern in the era of rapid climate change. In temperate regions, it is challenging to quantify the impacts of deforestation on the catchment dynamics and downstream aquatic ecosystems such as reservoirs and disentangle these from direct climate change impacts, let alone project future changes to inform management. Here, we tackled this issue by investigating a unique catchment-reservoir system with two reservoirs in distinct trophic states (meso- and eutrophic), both of which drain into the largest drinking water reservoir in Germany. Due to the prolonged droughts in 2015-2018, the catchment of the mesotrophic reservoir lost an unprecedented area of forest (exponential increase since 2015 and ca. 17.1% loss in 2020 alone). We coupled catchment nutrient exports (HYPE) and reservoir ecosystem dynamics (GOTM-WET) models using a process-based modeling approach. The coupled model was validated with datasets spanning periods of rapid deforestation, which makes our future projections highly robust. Results show that in a short-term time scale (by 2035), increasing nutrient flux from the catchment due to vast deforestation (80% loss) can turn the mesotrophic reservoir into a eutrophic state as its counterpart. Our results emphasize the more prominent impacts of deforestation than the direct impact of climate warming in impairment of water quality and ecological services to downstream aquatic ecosystems. Therefore, we propose to evaluate the impact of climate change on temperate reservoirs by incorporating a time scale-dependent context, highlighting the indirect impact of deforestation in the short-term scale. In the long-term scale (e.g. to 2100), a guiding hypothesis for future research may be that indirect effects (e.g., as mediated by catchment dynamics) are as important as the direct effects of climate warming on aquatic ecosystems. KW - deforestation KW - climate change KW - temperate regions KW - reservoir KW - eutrophication KW - process-based modeling Y1 - 2022 U6 - https://doi.org/10.1016/j.watres.2022.118721 SN - 0043-1354 SN - 1879-2448 VL - 221 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - THES A1 - Kemter, Matthias T1 - River floods in a changing world T1 - Flusshochwasser in einer sich ändernden Welt N2 - River floods are among the most devastating natural hazards worldwide. As their generation is highly dependent on climatic conditions, their magnitude and frequency are projected to be affected by future climate change. Therefore, it is crucial to study the ways in which a changing climate will, and already has, influenced flood generation, and thereby flood hazard. Additionally, it is important to understand how other human influences - specifically altered land cover - affect flood hazard at the catchment scale. The ways in which flood generation is influenced by climatic and land cover conditions differ substantially in different regions. The spatial variability of these effects needs to be taken into account by using consistent datasets across large scales as well as applying methods that can reflect this heterogeneity. Therefore, in the first study of this cumulative thesis a complex network approach is used to find 10 clusters of similar flood behavior among 4390 catchments in the conterminous United States. By using a consistent set of 31 hydro-climatological and land cover variables, and training a separate Random Forest model for each of the clusters, the regional controls on flood magnitude trends between 1960-2010 are detected. It is shown that changes in rainfall are the most important drivers of these trends, while they are regionally controlled by land cover conditions. While climate change is most commonly associated with flood magnitude trends, it has been shown to also influence flood timing. This can lead to trends in the size of the area across which floods occur simultaneously, the flood synchrony scale. The second study is an analysis of data from 3872 European streamflow gauges and shows that flood synchrony scales have increased in Western Europe and decreased in Eastern Europe. These changes are attributed to changes in flood generation, especially a decreasing relevance of snowmelt. Additionally, the analysis shows that both the absolute values and the trends of flood magnitudes and flood synchrony scales are positively correlated. If these trends persist in the future and are not accounted for, the combined increases of flood magnitudes and flood synchrony scales can exceed the capacities of disaster relief organizations and insurers. Hazard cascades are an additional way through which climate change can influence different aspects of flood hazard. The 2019/2020 wildfires in Australia, which were preceded by an unprecedented drought and extinguished by extreme rainfall that led to local flooding, present an opportunity to study the effects of multiple preceding hazards on flood hazard. All these hazards are individually affected by climate change, additionally complicating the interactions within the cascade. By estimating and analyzing the burn severity, rainfall magnitude, soil erosion and stream turbidity in differently affected tributaries of the Manning River catchment, the third study shows that even low magnitude floods can pose a substantial hazard within a cascade. This thesis shows that humanity is affecting flood hazard in multiple ways with spatially and temporarily varying consequences, many of which were previously neglected (e.g. flood synchrony scale, hazard cascades). To allow for informed decision making in risk management and climate change adaptation, it will be crucial to study these aspects across the globe and to project their trajectories into the future. The presented methods can depict the complex interactions of different flood drivers and their spatial variability, providing a basis for the assessment of future flood hazard changes. The role of land cover should be considered more in future flood risk modelling and management studies, while holistic, transferable frameworks for hazard cascade assessment will need to be designed. N2 - Flusshochwasser gehören zu den verheerendsten Naturkatastrophen weltweit. Ihre Entstehung hängt von klimatischen Bedingungen ab, weshalb vorhergesagt wird, dass sich ihre Magnituden und Häufigkeit durch den Klimawandel ändern werden. Daher ist es notwendig zu untersuchen, auf welche Art sich ein verändertes Klima - auch im Vergleich mit Effekten durch Landbedeckungsänderungen - auf Hochwasserentstehung und -gefahr auswirken könnte und das bereits getan hat. Diese kumulative Arbeit beleuchtet drei Teilaspekte dieses Themas. In der ersten Studie werden mittels maschinellen Lernens die wichtigsten Variablen entdeckt und untersucht, die die Änderungen von Hochwassermagnituden in 4390 Einzugsgebieten in den USA von 1960-2010 kontrolliert haben. Es wird gezeigt, dass Änderungen der Regenmengen der entscheidende Faktor waren, während Landnutzung regional von großer Bedeutung war. Die zweite Studie untersucht von 1960-2010 Änderungen in der Distanz innerhalb welcher Hochwasser in verschiedenen Flüssen gleichzeitig auftreten. Daten von 3872 europäischen Flusspegeln zeigen, dass sich die Fläche der gleichzeitigen Überflutung in Westeuropa vergrößert und in Osteuropa verkleinert hat, was auf abnehmende Relevanz der Schneeschmelze bei der Hochwasserentstehung zurückzuführen ist. Die dritte Studie behandelt die Auswirkungen kaskadierender Naturkatastrophen auf Hochwasser am Beispiel der australischen Waldbrände 2019/2020. Die Untersuchung der verschieden stark betroffenen Nebenflüsse des Manning River zeigt, dass in einer Naturgefahrenkaskade selbst gewöhnliche Hochwasser substantielle Auswirkungen haben können. Diese Arbeit zeigt, dass die Menschheit Hochwassergefahren auf verschiedene Arten und mit räumlich sowie zeitlich variablen Resultaten beeinflusst. Diese Aspekte müssen zukünftig global näher untersucht und ihre Entwicklung für die Zukunft modelliert werden, um fundierte Entscheidungen in Hochwasserschutz treffen zu können. Für Hochwassermagnituden und die Fläche gleichzeitiger Überflutung können hierfür die präsentierten Methoden adaptiert werden. KW - hydrology KW - climate change KW - flood KW - Hydrologie KW - Klimawandel KW - Hochwasser Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-558564 ER - TY - JOUR A1 - Huber, Veronika A1 - Krummenauer, Linda A1 - Peña-Ortiz, Cristina A1 - Lange, Stefan A1 - Gasparrini, Antonio A1 - Vicedo-Cabrera, Ana Maria A1 - Garcia-Herrera, Ricardo A1 - Frieler, Katja T1 - Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming JF - Environmental Research N2 - Background: Investigating future changes in temperature-related mortality as a function of global mean temperature (GMT) rise allows for the evaluation of policy-relevant climate change targets. So far, only few studies have taken this approach, and, in particular, no such assessments exist for Germany, the most populated country of Europe. Methods: We assess temperature-related mortality in 12 major German cities based on daily time-series of all-cause mortality and daily mean temperatures in the period 1993-2015, using distributed-lag non-linear models in a two-stage design. Resulting risk functions are applied to estimate excess mortality in terms of GMT rise relative to pre-industrial levels, assuming no change in demographics or population vulnerability. Results: In the observational period, cold contributes stronger to temperature-related mortality than heat, with overall attributable fractions of 5.49% (95%CI: 3.82-7.19) and 0.81% (95%CI: 0.72-0.89), respectively. Future projections indicate that this pattern could be reversed under progressing global warming, with heat-related mortality starting to exceed cold-related mortality at 3 degrees C or higher GMT rise. Across cities, projected net increases in total temperature-related mortality were 0.45% (95%CI: -0.02-1.06) at 3 degrees C, 1.53% (95%CI: 0.96-2.06) at 4 degrees C, and 2.88% (95%CI: 1.60-4.10) at 5 degrees C, compared to today's warming level of 1 degrees C. By contrast, no significant difference was found between projected total temperature-related mortality at 2 degrees C versus 1 degrees C of GMT rise. Conclusions: Our results can inform current adaptation policies aimed at buffering the health risks from increased heat exposure under climate change. They also allow for the evaluation of global mitigation efforts in terms of local health benefits in some of Germany's most populated cities. KW - temperature-related mortality KW - climate change KW - Future projections KW - Germany KW - global mean temperature Y1 - 2020 U6 - https://doi.org/10.1016/j.envres.2020.109447 SN - 0013-9351 SN - 1096-0953 VL - 186 SP - 1 EP - 10 PB - Elsevier CY - San Diego, California ER - TY - GEN A1 - Huber, Veronika A1 - Krummenauer, Linda A1 - Peña-Ortiz, Cristina A1 - Lange, Stefan A1 - Gasparrini, Antonio A1 - Vicedo-Cabrera, Ana Maria A1 - Garcia-Herrera, Ricardo A1 - Frieler, Katja T1 - Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background: Investigating future changes in temperature-related mortality as a function of global mean temperature (GMT) rise allows for the evaluation of policy-relevant climate change targets. So far, only few studies have taken this approach, and, in particular, no such assessments exist for Germany, the most populated country of Europe. Methods: We assess temperature-related mortality in 12 major German cities based on daily time-series of all-cause mortality and daily mean temperatures in the period 1993-2015, using distributed-lag non-linear models in a two-stage design. Resulting risk functions are applied to estimate excess mortality in terms of GMT rise relative to pre-industrial levels, assuming no change in demographics or population vulnerability. Results: In the observational period, cold contributes stronger to temperature-related mortality than heat, with overall attributable fractions of 5.49% (95%CI: 3.82-7.19) and 0.81% (95%CI: 0.72-0.89), respectively. Future projections indicate that this pattern could be reversed under progressing global warming, with heat-related mortality starting to exceed cold-related mortality at 3 degrees C or higher GMT rise. Across cities, projected net increases in total temperature-related mortality were 0.45% (95%CI: -0.02-1.06) at 3 degrees C, 1.53% (95%CI: 0.96-2.06) at 4 degrees C, and 2.88% (95%CI: 1.60-4.10) at 5 degrees C, compared to today's warming level of 1 degrees C. By contrast, no significant difference was found between projected total temperature-related mortality at 2 degrees C versus 1 degrees C of GMT rise. Conclusions: Our results can inform current adaptation policies aimed at buffering the health risks from increased heat exposure under climate change. They also allow for the evaluation of global mitigation efforts in terms of local health benefits in some of Germany's most populated cities. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1430 KW - temperature-related mortality KW - climate change KW - Future projections KW - Germany KW - global mean temperature Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-516511 SN - 1866-8372 ER - TY - THES A1 - Hallermeier, Larissa Diane T1 - Küsten und Klimawandel in den Augen von Touristen : eine Wahrnehmungsanalyse an der deutschen Ostsee T1 - How do tourists percieve the coast and climate change? : A perception analysis at the Baltic Sea N2 - Aufgrund seiner wirtschaftlichen Bedeutung spielt der Tourismus in Mecklenburg-Vorpommern eine große Rolle. Insbesondere die Küstengebiete sind beliebte Reiseziele. In den letzten Jahren konnte ein kontinuierlicher Anstieg der Ankünfte und Übernachtungen verzeichnet werden. Neben anderen Faktoren werden die regionalen Auswirkungen des Klimawandels jedoch in Zukunft eine Herausforderung für den Tourismussektor darstellen. Die globale Erwärmung wird für den Strand- und Badetourismus sowohl negative, als auch positive Folgen haben, auf die reagiert werden muss. Neben vorbeugenden Klimaschutzmaßnahmen werden künftig auch Anpassungsstrategien entwickelt werden müssen, die den zu erwartenden Veränderungen Rechnung tragen. Doch zu welchen tourismusrelevanten Veränderungen wird es überhaupt kommen und was geschieht bereits aktuell? Sind die Folgen des Klimawandels durch Touristen schon jetzt wahrnehmbar? Wie reagieren die Urlauber auf eventuelle Veränderungen? Diese und andere Fragen soll die vorliegende Arbeit, die innerhalb des RAdOST-Vorhabens (Regionale Anpassungsstrategien für die deutsche Ostseeküste) angesiedelt ist, beantworten. Dazu wurde zum einen eine Literaturrecherche zu tourismusrelevanten Klimawandelfolgen an der deutschen Ostseeküste durchgeführt. Zum anderen erfolgte in den Sommermonaten 2010 eine Befragung der Strandgäste in Markgrafenheide, Warnemünde und Nienhagen an der mecklenburgischen Ostseeküste. Im Mittelpunkt der Umfrage stand die Wahrnehmung von Erscheinungen (z.B. viele Quallen oder warmes Ostseewasser) sowie kurz- oder langfristigen Veränderungen an der Küste (z.B. schmalere Strände, vermehrter Strandanwurf) durch die Urlauber. Außerdem wurden die Einstellung und der Informationsgrad der Gäste zum Thema Klimawandel an der Ostseeküste analysiert. Ziel war es, aus den Umfrageergebnissen Handlungsempfehlungen für das lokale Strandmanagement hinsichtlich künftiger Anpassungsstrategien abzuleiten. Die Literaturrecherche zeigte, dass in einigen Bereichen schon jetzt Veränderungen (z.B. der Luft- und Wassertemperatur oder des Meeresspiegels) nachweisbar sind und laut verschiedener Modellprojektionen von weiteren Veränderungen ausgegangen werden kann. Wie die Umfrage deutlich machte, sind die Veränderungen momentan durch Touristen jedoch kaum oder gar nicht wahrnehmbar. Dementsprechend gering ist auch ihre Reaktion auf die einzelnen Phänomene. Generell ist die Wahrnehmung der Urlauber sehr subjektiv und selektiv. Manche Gegebenheiten wie beispielsweise existierende Küstenschutzmaßnahmen werden von einem großen Teil der Touristen gar nicht wahrgenommen. Hinsichtlich anderer Erscheinungen wie Strandanwurf und Quallen sind viele Besucher wiederum sehr sensibel. Es zeigte sich außerdem, dass es für die meisten Urlauber schwierig ist, zu beurteilen, ob bestimmte Gegebenheiten am Strand und an der Küste mit der globalen Erwärmung in Verbindung stehen oder nicht. Es besteht eine große Unsicherheit zu diesem Thema und oft wird der Klimawandel als Ursache für Erscheinungen genannt, auch wenn der kausale Zusammenhang wissenschaftlich nicht nachzuweisen ist. Es zeigte sich, dass die Urlauber sehr wenig über die regionalen Auswirkungen des Klimawandels informiert sind, sich aber Informationen wünschen. Folglich sollte zunächst die Aufklärung und Information der Urlauber über die Folgen der Veränderung des Klimas im Vordergrund stehen. Denn manche Aspekte, wie der Verlust von Strandabschnitten durch Erosion oder eine eventuelle Zunahme von Blaualgen in der Sommersaison, können nicht gänzlich vermieden werden. Durch gezielte Aufklärung könnte jedoch beispielsweise eine Akzeptanz für naturnahe Strände oder für den Rückzug aus einzelnen Gebieten geschaffen werden. Darüber hinaus sollte die zu erwartende Saisonverlängerung systematisch genutzt werden, um sowohl die Küste, als auch das Hinterland durch gezielte Angebote für Touristen attraktiv zu machen. Auf diese Weise könnte eine Entzerrung der Hauptsaison und eine bessere Auslastung der Beherbergungsbetriebe sowie der touristischen Infrastruktur erreicht werden. KW - Ostsee KW - Klimawandel KW - Anpassungsstrategien KW - Wahrnehmung KW - Tourismus KW - Baltic Sea KW - climate change KW - adaptation KW - perception KW - tourism Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-53855 ER - TY - THES A1 - Güntner, Andreas T1 - Large-scale hydrological modelling in the semi-arid north-east of Brazil N2 - Semi-arid areas are, due to their climatic setting, characterized by small water resources. An increasing water demand as a consequence of population growth and economic development as well as a decreasing water availability in the course of possible climate change may aggravate water scarcity in future, which often exists already for present-day conditions in these areas. Understanding the mechanisms and feedbacks of complex natural and human systems, together with the quantitative assessment of future changes in volume, timing and quality of water resources are a prerequisite for the development of sustainable measures of water management to enhance the adaptive capacity of these regions. For this task, dynamic integrated models, containing a hydrological model as one component, are indispensable tools. The main objective of this study is to develop a hydrological model for the quantification of water availability in view of environmental change over a large geographic domain of semi-arid environments. The study area is the Federal State of Ceará (150 000 km2) in the semi-arid north-east of Brazil. Mean annual precipitation in this area is 850 mm, falling in a rainy season with duration of about five months. Being mainly characterized by crystalline bedrock and shallow soils, surface water provides the largest part of the water supply. The area has recurrently been affected by droughts which caused serious economic losses and social impacts like migration from the rural regions. The hydrological model Wasa (Model of Water Availability in Semi-Arid Environments) developed in this study is a deterministic, spatially distributed model being composed of conceptual, process-based approaches. Water availability (river discharge, storage volumes in reservoirs, soil moisture) is determined with daily resolution. Sub-basins, grid cells or administrative units (municipalities) can be chosen as spatial target units. The administrative units enable the coupling of Wasa in the framework of an integrated model which contains modules that do not work on the basis of natural spatial units. The target units mentioned above are disaggregated in Wasa into smaller modelling units within a new multi-scale, hierarchical approach. The landscape units defined in this scheme capture in particular the effect of structured variability of terrain, soil and vegetation characteristics along toposequences on soil moisture and runoff generation. Lateral hydrological processes at the hillslope scale, as reinfiltration of surface runoff, being of particular importance in semi-arid environments, can thus be represented also within the large-scale model in a simplified form. Depending on the resolution of available data, small-scale variability is not represented explicitly with geographic reference in Wasa, but by the distribution of sub-scale units and by statistical transition frequencies for lateral fluxes between these units. Further model components of Wasa which respect specific features of semi-arid hydrology are: (1) A two-layer model for evapotranspiration comprises energy transfer at the soil surface (including soil evaporation), which is of importance in view of the mainly sparse vegetation cover. Additionally, vegetation parameters are differentiated in space and time in dependence on the occurrence of the rainy season. (2) The infiltration module represents in particular infiltration-excess surface runoff as the dominant runoff component. (3) For the aggregate description of the water balance of reservoirs that cannot be represented explicitly in the model, a storage approach respecting different reservoirs size classes and their interaction via the river network is applied. (4) A model for the quantification of water withdrawal by water use in different sectors is coupled to Wasa. (5) A cascade model for the temporal disaggregation of precipitation time series, adapted to the specific characteristics of tropical convective rainfall, is applied for the generating rainfall time series of higher temporal resolution. All model parameters of Wasa can be derived from physiographic information of the study area. Thus, model calibration is primarily not required. Model applications of Wasa for historical time series generally results in a good model performance when comparing the simulation results of river discharge and reservoir storage volumes with observed data for river basins of various sizes. The mean water balance as well as the high interannual and intra-annual variability is reasonably represented by the model. Limitations of the modelling concept are most markedly seen for sub-basins with a runoff component from deep groundwater bodies of which the dynamics cannot be satisfactorily represented without calibration. Further results of model applications are: (1) Lateral processes of redistribution of runoff and soil moisture at the hillslope scale, in particular reinfiltration of surface runoff, lead to markedly smaller discharge volumes at the basin scale than the simple sum of runoff of the individual sub-areas. Thus, these processes are to be captured also in large-scale models. The different relevance of these processes for different conditions is demonstrated by a larger percentage decrease of discharge volumes in dry as compared to wet years. (2) Precipitation characteristics have a major impact on the hydrological response of semi-arid environments. In particular, underestimated rainfall intensities in the rainfall input due to the rough temporal resolution of the model and due to interpolation effects and, consequently, underestimated runoff volumes have to be compensated in the model. A scaling factor in the infiltration module or the use of disaggregated hourly rainfall data show good results in this respect. The simulation results of Wasa are characterized by large uncertainties. These are, on the one hand, due to uncertainties of the model structure to adequately represent the relevant hydrological processes. On the other hand, they are due to uncertainties of input data and parameters particularly in view of the low data availability. Of major importance is: (1) The uncertainty of rainfall data with regard to their spatial and temporal pattern has, due to the strong non-linear hydrological response, a large impact on the simulation results. (2) The uncertainty of soil parameters is in general of larger importance on model uncertainty than uncertainty of vegetation or topographic parameters. (3) The effect of uncertainty of individual model components or parameters is usually different for years with rainfall volumes being above or below the average, because individual hydrological processes are of different relevance in both cases. Thus, the uncertainty of individual model components or parameters is of different importance for the uncertainty of scenario simulations with increasing or decreasing precipitation trends. (4) The most important factor of uncertainty for scenarios of water availability in the study area is the uncertainty in the results of global climate models on which the regional climate scenarios are based. Both a marked increase or a decrease in precipitation can be assumed for the given data. Results of model simulations for climate scenarios until the year 2050 show that a possible future change in precipitation volumes causes a larger percentage change in runoff volumes by a factor of two to three. In the case of a decreasing precipitation trend, the efficiency of new reservoirs for securing water availability tends to decrease in the study area because of the interaction of the large number of reservoirs in retaining the overall decreasing runoff volumes. N2 - Semiaride Gebiete sind auf Grund der klimatischen Bedingungen durch geringe Wasserressourcen gekennzeichnet. Ein zukünftig steigender Wasserbedarf in Folge von Bevölkerungswachstum und ökonomischer Entwicklung sowie eine geringere Wasserverfügbarkeit durch mögliche Klimaänderungen können dort zu einer Verschärfung der vielfach schon heute auftretenden Wasserknappheit führen. Das Verständnis der Mechanismen und Wechselwirkungen des komplexen Systems von Mensch und Umwelt sowie die quantitative Bestimmung zukünftiger Veränderungen in der Menge, der zeitlichen Verteilung und der Qualität von Wasserressourcen sind eine grundlegende Voraussetzung für die Entwicklung von nachhaltigen Maßnahmen des Wassermanagements mit dem Ziel einer höheren Anpassungsfähigkeit dieser Regionen gegenüber künftigen Änderungen. Hierzu sind dynamische integrierte Modelle unerlässlich, die als eine Komponente ein hydrologisches Modell beinhalten. Vorrangiges Ziel dieser Arbeit ist daher die Erstellung eines hydrologischen Modells zur großräumigen Bestimmung der Wasserverfügbarkeit unter sich ändernden Umweltbedingungen in semiariden Gebieten. Als Untersuchungsraum dient der im semiariden tropischen Nordosten Brasiliens gelegene Bundestaat Ceará (150 000 km2). Die mittleren Jahresniederschläge in diesem Gebiet liegen bei 850 mm innerhalb einer etwa fünfmonatigen Regenzeit. Mit vorwiegend kristallinem Grundgebirge und geringmächtigen Böden stellt Oberflächenwasser den größten Teil der Wasserversorgung bereit. Die Region war wiederholt von Dürren betroffen, die zu schweren ökonomischen Schäden und sozialen Folgen wie Migration aus den ländlichen Gebieten geführt haben. Das hier entwickelte hydrologische Modell Wasa (Model of Water Availability in Semi-Arid Environments) ist ein deterministisches, flächendifferenziertes Modell, das aus konzeptionellen, prozess-basierten Ansätzen aufgebaut ist. Die Wasserverfügbarkeit (Abfluss im Gewässernetz, Speicherung in Stauseen, Bodenfeuchte) wird mit täglicher Auflösung bestimmt. Als räumliche Zieleinheiten können Teileinzugsgebiete, Rasterzellen oder administrative Einheiten (Gemeinden) gewählt werden. Letztere ermöglichen die Kopplung des Modells im Rahmen der integrierten Modellierung mit Modulen, die nicht auf der Basis natürlicher Raumeinheiten arbeiten. Im Rahmen eines neuen skalenübergreifenden, hierarchischen Ansatzes werden in Wasa die genannten Zieleinheiten in kleinere räumliche Modellierungseinheiten unterteilt. Die ausgewiesenen Landschaftseinheiten erfassen insbesondere die strukturierte Variabilität von Gelände-, Boden- und Vegetationseigenschaften entlang von Toposequenzen in ihrem Einfluss auf Bodenfeuchte und Abflussbildung. Laterale hydrologische Prozesse auf kleiner Skala, wie die für semiaride Bedingungen bedeutsame Wiederversickerung von Oberflächenabfluss, können somit auch in der erforderlichen großskaligen Modellanwendung vereinfacht wiedergegeben werden. In Abhängigkeit von der Auflösung der verfügbaren Daten wird in Wasa die kleinskalige Variabilität nicht räumlich explizit sondern über die Verteilung von Flächenanteilen subskaliger Einheiten und über statistische Übergangshäufigkeiten für laterale Flüsse zwischen den Einheiten berücksichtigt. Weitere Modellkomponenten von Wasa, die spezifische Bedingungen semiarider Gebiete berücksichtigen, sind: (1) Ein Zwei-Schichten-Modell zur Bestimmung der Evapotranspiration berücksichtigt auch den Energieumsatz an der Bodenoberfläche (inklusive Bodenverdunstung), der in Anbetracht der meist lichten Vegetationsbedeckung von Bedeutung ist. Die Vegetationsparameter werden zudem flächen- und zeitdifferenziert in Abhängigkeit vom Auftreten der Regenzeit modifiziert. (2) Das Infiltrationsmodul bildet insbesondere Oberflächenabfluss durch Infiltrationsüberschuss als dominierender Abflusskomponente ab. (3) Zur aggregierten Beschreibung der Wasserbilanz von im Modell nicht einzeln erfassbaren Stauseen wird ein Speichermodell unter Berücksichtigung verschiedener Größenklassen und ihrer Interaktion über das Gewässernetz eingesetzt. (4) Ein Modell zur Bestimmung der Entnahme durch Wassernutzung in verschiedenen Sektoren ist an Wasa gekoppelt. (5) Ein Kaskadenmodell zur zeitlichen Disaggregierung von Niederschlagszeitreihen, das in dieser Arbeit speziell für tropische konvektive Niederschlagseigenschaften angepasst wird, wird zur Erzeugung höher aufgelöster Niederschlagsdaten verwendet. Alle Modellparameter von Wasa können von physiographischen Gebietsinformationen abgeleitet werden, sodass eine Modellkalibrierung primär nicht erforderlich ist. Die Modellanwendung von Wasa für historische Zeitreihen ergibt im Allgemeinen eine gute Übereinstimmung der Simulationsergebnisse für Abfluss und Stauseespeichervolumen mit Beobachtungsdaten in unterschiedlich großen Einzugsgebieten. Die mittlere Wasserbilanz sowie die hohe monatliche und jährliche Variabilität wird vom Modell angemessen wiedergegeben. Die Grenzen der Anwendbarkeit des Modell-konzepts zeigen sich am deutlichsten in Teilgebieten mit Abflusskomponenten aus tieferen Grundwasserleitern, deren Dynamik ohne Kalibrierung nicht zufriedenstellend abgebildet werden kann. Die Modellanwendungen zeigen weiterhin: (1) Laterale Prozesse der Umverteilung von Bodenfeuchte und Abfluss auf der Hangskala, vor allem die Wiederversickerung von Oberflächenabfluss, führen auf der Skala von Einzugsgebieten zu deutlich kleineren Abflussvolumen als die einfache Summe der Abflüsse der Teilflächen. Diese Prozesse sollten daher auch in großskaligen Modellen abgebildet werden. Die unterschiedliche Ausprägung dieser Prozesse für unterschiedliche Bedingungen zeigt sich an Hand einer prozentual größeren Verringerung der Abflussvolumen in trockenen im Vergleich zu feuchten Jahren. (2) Die Niederschlagseigenschaften haben einen sehr großen Einfluss auf die hydrologische Reaktion in semiariden Gebieten. Insbesondere die durch die grobe zeitliche Auflösung des Modells und durch Interpolationseffekte unterschätzten Niederschlagsintensitäten in den Eingangsdaten und die daraus folgende Unterschätzung von Abflussvolumen müssen im Modell kompensiert werden. Ein Skalierungsfaktor in der Infiltrationsroutine oder die Verwendung disaggregierter stündlicher Niederschlagsdaten zeigen hier gute Ergebnisse. Die Simulationsergebnisse mit Wasa sind insgesamt durch große Unsicherheiten gekennzeichnet. Diese sind einerseits in Unsicherheiten der Modellstruktur zur adäquaten Beschreibung der relevanten hydrologischen Prozesse begründet, andererseits in Daten- und Parametersunsicherheiten in Anbetracht der geringen Datenverfügbarkeit. Von besonderer Bedeutung ist: (1) Die Unsicherheit der Niederschlagsdaten in ihrem räumlichen Muster und ihrer zeitlichen Struktur hat wegen der stark nicht-linearen hydrologischen Reaktion einen großen Einfluss auf die Simulationsergebnisse. (2) Die Unsicherheit von Bodenparametern hat im Vergleich zu Vegetationsparametern und topographischen Parametern im Allgemeinen einen größeren Einfluss auf die Modellunsicherheit. (3) Der Effekt der Unsicherheit einzelner Modellkomponenten und -parameter ist für Jahre mit unter- oder überdurchschnittlichen Niederschlagsvolumen zumeist unterschiedlich, da einzelne hydrologische Prozesse dann jeweils unterschiedlich relevant sind. Die Unsicherheit einzelner Modellkomponenten- und parameter hat somit eine unterschiedliche Bedeutung für die Unsicherheit von Szenarienrechnungen mit steigenden oder fallenden Niederschlagstrends. (4) Der bedeutendste Unsicherheitsfaktor für Szenarien der Wasserverfügbarkeit für die Untersuchungsregion ist die Unsicherheit der den regionalen Klimaszenarien zu Grunde liegenden Ergebnisse globaler Klimamodelle. Eine deutliche Zunahme oder Abnahme der Niederschläge bis 2050 kann gemäß den hier vorliegenden Daten für das Untersuchungsgebiet gleichermaßen angenommen werden. Modellsimulationen für Klimaszenarien bis zum Jahr 2050 ergeben, dass eine mögliche zukünftige Veränderung der Niederschlagsmengen zu einer prozentual zwei- bis dreifach größeren Veränderung der Abflussvolumen führt. Im Falle eines Trends von abnehmenden Niederschlagsmengen besteht in der Untersuchungsregion die Tendenz, dass auf Grund der gegenseitigen Beeinflussung der großen Zahl von Stauseen beim Rückhalt der tendenziell abnehmenden Abflussvolumen die Effizienz von neugebauten Stauseen zur Sicherung der Wasserverfügbarkeit zunehmend geringer wird. KW - Ceará / Semiarides Gebiet / Wasserreserve / Hydrologie / Mathematisches Modell KW - Hydrologie KW - Wasserverfügbarkeit KW - Klimaänderung KW - Niederschlag-Abfluss-Modellierung KW - Trockengebiet KW - semi-arid KW - Unsicherheiten KW - Brasilien KW - hydrology KW - water availability KW - climate change KW - rainfall-runoff modelling KW - drylands KW - semi-arid KW - uncertainties KW - Brazil Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000511 ER - TY - JOUR A1 - Guzman Arias, Diego Alejandro A1 - Samprogna Mohor, Guilherme A1 - Mendiondo, Eduardo Mario T1 - Multi-driver ensemble to evaluate the water utility business interruption cost induced by hydrological drought risk scenarios in Brazil JF - Urban water journal N2 - Climate change and increasing water demand in urban environments necessitate planning water utility companies' finances. Traditionally, methods to estimate the direct water utility business interruption costs (WUBIC) caused by droughts have not been clearly established. We propose a multi-driver assessment method. We project the water yield using a hydrological model driven by regional climate models under radiative forcing scenarios. We project water demand under stationary and non-stationary conditions to estimate drought severity and duration, which are linked with pricing policies recently adopted by the Sao Paulo Water Utility Company. The results showed water insecurity. The non-stationary trend imposed larger differences in the drought resilience financial gap, suggesting that the uncertainties of WUBIC derived from demand and climate models are greater than those associated with radiative forcing scenarios. As populations increase, proactively controlling demand is recommended to avoid or minimize reactive policy changes during future drought events, repeating recent financial impacts. KW - Business interruption cost KW - water utility company KW - hydrological KW - droughts KW - water security KW - urban water KW - climate change Y1 - 2022 U6 - https://doi.org/10.1080/1573062X.2022.2058564 SN - 1573-062X SN - 1744-9006 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - THES A1 - Gutsch, Martin T1 - Model-based analysis of climate change impacts on the productivity of oak-pine forests in Brandenburg T1 - Modell-basierte Analyse der Auswirkungen des Klimawandels auf die Produktivität von Eichen-Kiefern-Mischbeständen in Brandenburg N2 - The relationship between climate and forest productivity is an intensively studied subject in forest science. This Thesis is embedded within the general framework of future forest growth under climate change and its implications for the ongoing forest conversion. My objective is to investigate the future forest productivity at different spatial scales (from a single specific forest stand to aggregated information across Germany) with focus on oak-pine forests in the federal state of Brandenburg. The overarching question is: how are the oak-pine forests affected by climate change described by a variety of climate scenarios. I answer this question by using a model based analysis of tree growth processes and responses to different climate scenarios with emphasis on drought events. In addition, a method is developed which considers climate change uncertainty of forest management planning. As a first 'screening' of climate change impacts on forest productivity, I calculated the change in net primary production on the base of a large set of climate scenarios for different tree species and the total area of Germany. Temperature increases up to 3 K lead to positive effects on the net primary production of all selected tree species. But, in water-limited regions this positive net primary production trend is dependent on the length of drought periods which results in a larger uncertainty regarding future forest productivity. One of the regions with the highest uncertainty of net primary production development is the federal state of Brandenburg. To enhance the understanding and ability of model based analysis of tree growth sensitivity to drought stress two water uptake approaches in pure pine and mixed oak-pine stands are contrasted. The first water uptake approach consists of an empirical function for root water uptake. The second approach is more mechanistic and calculates the differences of soil water potential along a soil-plant-atmosphere continuum. I assumed the total root resistance to vary at low, medium and high total root resistance levels. For validation purposes three data sets on different tree growth relevant time scales are used. Results show that, except the mechanistic water uptake approach with high total root resistance, all transpiration outputs exceeded observed values. On the other hand high transpiration led to a better match of observed soil water content. The strongest correlation between simulated and observed annual tree ring width occurred with the mechanistic water uptake approach and high total root resistance. The findings highlight the importance of severe drought as a main reason for small diameter increment, best supported by the mechanistic water uptake approach with high root resistance. However, if all aspects of the data sets are considered no approach can be judged superior to the other. I conclude that the uncertainty of future productivity of water-limited forest ecosystems under changing environmental conditions is linked to simulated root water uptake. Finally my study aimed at the impacts of climate change combined with management scenarios on an oak-pine forest to evaluate growth, biomass and the amount of harvested timber. The pine and the oak trees are 104 and 9 years old respectively. Three different management scenarios with different thinning intensities and different climate scenarios are used to simulate the performance of management strategies which explicitly account for the risks associated with achieving three predefined objectives (maximum carbon storage, maximum harvested timber, intermediate). I found out that in most cases there is no general management strategy which fits best to different objectives. The analysis of variance in the growth related model outputs showed an increase of climate uncertainty with increasing climate warming. Interestingly, the increase of climate-induced uncertainty is much higher from 2 to 3 K than from 0 to 2 K. N2 - Diese Arbeit befasst sich mit der Modellierung der Produktivität von Eichen-Kiefern Mischbeständen mit besonderem Fokus auf das Bundesland Brandenburg. Es werden drei Hauptfragen bearbeitet: a) wie verhält sich die Produktivität der beiden Baumarten im Vergleich zu den beiden anderen Hauptbaumarten Fichte und Buche im gesamtdeutschen Vergleich unter verschiedenen Klimaszenarien, b) wie wichtig ist der Prozess der Wasseraufnahme über die Wurzeln bei der Modellierung der Produktivität unter Bedingungen von Trockenjahren, c) wie lassen sich Unsicherheiten durch Bewirtschaftung und Klimaszenarien in der Modellierung der Eichen-Kiefern Mischbestände und bei nachfolgenden Entscheidungsprozessen berücksichtigen? Der methodische Schwerpunkt der Arbeit liegt auf der Modellierung. Im ersten Teil der Arbeit werden mit Hilfe von verschiedenen unabhängigen Umweltvariablen des Klimas und des Bodens Wirkungsbeziehungen zur Produktivität ermittelt, die Aussagen zur Veränderung der Produktivität in Abhängigkeit dieser Umweltvariablen erlauben. Damit können verschiedene Regionen in Deutschland auf ihre Sensitivität der Produktivität gegenüber verschiedenen Klimaszenarien hin untersucht werden. Im zweiten Teil werden innerhalb eines prozess-basierten Waldwachstumsmodell 4C zwei unterschiedliche Ansätze der Wasseraufnahme über die Wurzeln analysiert. Dabei werden Messdaten zur Transpiration, zu Bodenwassergehalten und zu Durchmesserzuwächsen auf Basis von Jahrringchronologien zur Überprüfung herangezogen. Der erste Ansatz ist eine empirisch abgeleitete Gleichung, die die Wasseraufnahme in Abhängigkeit des Wassergehalts beschreibt. Der zweite Ansatz berücksichtigt die unterschiedlichen Druckpotenziale sowie einzelne Widerstände entlang des Wasserflusses vom Boden über die Pflanze in die Atmosphäre. Im dritten Teil der Arbeit wird das Waldwachstumsmodell angewendet und eine Auswahlmethodik vorgestellt, die Entscheidungen bei Unsicherheit erlaubt. Dabei werden die vorhandenen Unsicherheiten, hervorgerufen durch Bewirtschaftung und Klima, in den Prozess der Entscheidungsfindung quantitativ mit einbezogen. Drei verschiedene Bewirtschaftungsstrategien, die unterschiedliche Durchforstungsstärken beinhalten, werden simuliert und ihr Erreichen von drei vorher festgelegten Ziele (maximale Kohlenstoffspeicherung im Bestand, maximale Holzernte, moderates Ziel hinsichtlich Kohlenstoffspeicherung und Holzernte) untersucht. Bezogen auf die erste Frage ergibt die Arbeit zwei wesentliche Ergebnisse. Eine Temperaturerhöhung bis zu drei Kelvin bis 2060 führt zu positiven Ergebnissen in der Produktivität von Eichen-, Kiefern-, Buchen- und Fichtenbeständen. Allerdings ist in niederschlagsarmen Regionen, wie im nordostdeutschen Tiefland, dieser positive Trend stark abhängig von der Länge der Trockenperioden innerhalb der Vegetationszeit. Demzufolge ist die Produktivitätsveränderung der vier Baumarten im Land Brandenburg mit der höchsten Unsicherheit im Vergleich zu den anderen Bundesländern verbunden. Zur zweiten Frage gibt die Arbeit zwei wesentliche Ergebnisse. Im Vergleich mit den Messdaten auf unterschiedlicher zeitlicher und physiologischer Ebene kann kein Ansatz ermittelt werden, der jeweils das bessere Ergebnis erzielt. Im Vergleich von Transpiration, Bodenwassergehalt und Trockenjahren ergeben sich zwar etwas bessere Ergebnisse für den prozess-basierten gegenüber dem empirischen Ansatz, doch sind diese sehr stark abhängig vom angenommenen Wurzelwiderstand. Dieser ist schwer zu bestimmen und verhindert bisher eine breite Anwendung des Ansatzes innerhalb der Waldwachstumsmodelle. Hier ist weiterer Forschungsbedarf vorhanden um bei der Modellierung der Auswirkungen von Trockenjahren auf die Produktivität die Modellunsicherheit zu verringern. Für die letzte Frage ergeben sich ebenso interessante Ergebnisse. Keine Durchforstungsstrategie kann alle drei Zielstellungen erfüllen. Die Methodik erlaubt aber ein großes Maß an Objektivität beim Vergleich der unterschiedlichen Bewirtschaftungsstrategien unter der Unsicherheit der Klimaszenarien. Die Varianz, bezogen auf Ergebnisse zur Bestandesbiomasse, Holzernte und zum jährlichen Holzzuwachs, steigt mit steigender Klimaerwärmung. Dabei ist der Anstieg in der Varianz größer bei einem Temperaturanstieg von zwei Kelvin auf drei Kelvin als von null Kelvin auf zwei Kelvin. Das heißt, Auswirkungen einer Klimaerwärmung verlaufen hier nicht linear. KW - climate change KW - forest management KW - forest growth modelling KW - scenario analysis KW - water uptake KW - Klimawandel KW - Klimaauswirkung KW - Forstwirtschaft KW - Waldbewirtschaftung KW - Waldwachstumsmodellierung KW - Unsicherheit Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-97241 ER - TY - THES A1 - Fürstenau, Cornelia T1 - The impact of silvicultural strategies and climate change on carbon sequestration and other forest ecosystem functions T1 - Der Einfluss von Waldbewirtschaftungsstrategien und Klimawandel auf die Kohlenstoffspeicherung und andere Waldfunktionen N2 - Forests are a key resource serving a multitude of functions such as providing income to forest owners, supplying industries with timber, protecting water resources, and maintaining biodiversity. Recently much attention has been given to the role of forests in the global carbon cycle and their management for increased carbon sequestration as a possible mitigation option against climate change. Furthermore, the use of harvested wood can contribute to the reduction of atmospheric carbon through (i) carbon sequestration in wood products, (ii) the substitution of non-wood products with wood products, and (iii) through the use of wood as a biofuel to replace fossil fuels. Forest resource managers are challenged by the task to balance these multiple while simultaneously meeting economic requirements and taking into consideration the demands of stakeholder groups. Additionally, risks and uncertainties with regard to uncontrollable external variables such as climate have to be considered in the decision making process. In this study a scientific stakeholder dialogue with forest-related stakeholder groups in the Federal State of Brandenburg was accomplished. The main results of this dialogue were the definition of major forest functions (carbon sequestration, groundwater recharge, biodiversity, and timber production) and priority setting among them by the stakeholders using the pair-wise comparison technique. The impact of different forest management strategies and climate change scenarios on the main functions of forest ecosystems were evaluated at the Kleinsee management unit in south-east Brandenburg. Forest management strategies were simulated over 100 years using the forest growth model 4C and a wood product model (WPM). A current climate scenario and two climate change scenarios based on global circulation models (GCMs) HadCM2 and ECHAM4 were applied. The climate change scenario positively influenced stand productivity, carbon sequestration, and income. The impact on the other forest functions was small. Furthermore, the overall utility of forest management strategies were compared under the priority settings of stakeholders by a multi-criteria analysis (MCA) method. Significant differences in priority setting and the choice of an adequate management strategy were found for the environmentalists on one side and the more economy-oriented forest managers of public and private owned forests on the other side. From an ecological perspective, a conservation strategy would be preferable under all climate scenarios, but the business as usual management would also fit the expectations under the current climate. In contrast, a forest manager in public-owned forests or a private forest owner would prefer a management strategy with an intermediate thinning intensity and a high share of pine stands to enhance income from timber production while maintaining the other forest functions. The analysis served as an example for the combined application of simulation tools and a MCA method for the evaluation of management strategies under multi-purpose and multi-user settings with changing climatic conditions. Another focus was set on quantifying the overall effect of forest management on carbon sequestration in the forest sector and the wood industry sector plus substitution effects. To achieve this objective, the carbon emission reduction potential of material and energy substitution (Smat and Sen) was estimated based on a literature review. On average, for each tonne of dry wood used in a wood product substituting a non-wood product, 0.71 fewer tonnes of fossil carbon are emitted into to the atmosphere. Based on Smat and Sen, the calculation of the carbon emission reduction through substitution was implemented in the WPM. Carbon sequestration and substitution effects of management strategies were simulated at three local scales using the WPM and the forest growth models 4C (management unit level) or EFISCEN (federal state of Brandenburg and Germany). An investigation was conducted on the influence of uncertainties in the initialisation of the WPM, Smat, and basic conditions of the wood product sector on carbon sequestration. Results showed that carbon sequestration in the wood industry sector plus substitution effects exceeded sequestration in the forest sector. In contrast to the carbon pools in the forest sector, which acted as sink or source, the substitution effects continually reduced carbon emission as long as forests are managed and timber is harvested. The main climate protection function was investigated for energy substitution which accounted for about half of the total carbon sequestration, followed by carbon storage in landfills. In Germany, the absolute annual carbon sequestration in the forest and wood industry sector plus substitution effects was 19.9 Mt C. Over 50 years the wood industry sector contributed 70% of the total carbon sequestration plus substitution effects. N2 - Wälder beeinflussen in vielfältiger Weise unser Leben. Für den Waldbesitzer sind sie Einkommensquelle, die Holzindustrie versorgen sie mit dem Rohstoff, aus dem unzählige Dinge für den täglichen Bedarfs hergestellt werden, wie zum Beispiel Baumaterialien, Möbel, Gartengeräte, Spielzeug und Papier. Außerdem versorgen Wälder uns mit sauberem Grundwasser, sind Lebensraum für Pflanzen und Tiere und tragen somit zum Erhalt der Artenvielfalt bei. Nicht zuletzt beeinflussen Wälder das Klimasystem, da sie der Atmosphäre das Treibhausgas CO2 entziehen und Kohlenstoff in Biomasse und Boden speichern. Förster stehen nun vor der anspruchsvollen Aufgabe, eine Balance zwischen den vielfältigen und oft auch gegensätzlichen Waldfunktionen zu finden und die Ansprüche von Interessengruppen wahrzunehmen. Zusätzlich müssen im waldbaulichen Entscheidungsprozess Risiken und Unsicherheiten durch unberechenbare externe Faktoren, wie das Klima, beachtet werden. Ziel der Arbeit war es, den Einfluss von Klima und Waldbaustrategien auf Waldfunktionen zu untersuchen. Als Testgebiet fungierte das Revier Kleinsee im Südosten Brandenburgs, in dem Kiefern- und Eichenbestände vorherrschen. In einem wissenschaftlichen Dialog mit Angestellten der Forstbehörde, Privatwaldbesitzern, Vertretern von Naturschutzverbänden sowie Wissenschaftlern definierten die Teilnehmer die wichtigsten Waldfunktionen: Kohlenstoffspeicherung, Grundwasserneubildung, Biodiversität und Holzproduktion. Die Simulationen wurden mit Hilfe des Waldwachstumsmodells 4C und einem neu implementierten Holzproduktmodell (WPM) über einen Zeitraum von 100 Jahren durchgeführt. Dabei wurden den heutigen Klimabedingungen zwei Klimaänderungsszenarien gegenübergestellt, die auf den globalen Zirkulationsmodellen HadCM2 und ECHAM4 basieren. Es stellte sich heraus, dass unter den angenommenen Klimaänderungen das Wachstum der Bestände steigt und sich damit die Kohlenstoffspeicherung und der Ertrag aus Holzernten erhöht, wohingegen Biodiversität und Grundwasserneubildung nur sehr gering beeinflusst werden. Der Nutzen der Waldbewirtschaftungsstrategien für drei Interessensgruppen (Forstbehörde, private Waldbesitzer, Naturschutzvereine) wurde mit einer multikriteriellen Analysemethode bewertet. Dabei unterschieden sich die Rangfolge und Gewichtung der einzelnen Waldfunktionen sowie die daraus resultierende Wahl der Waldbaustrategien zwischen den Naturschützern einerseits sowie den stärker ökonomisch orientierten Landeswaldförstern und privaten Waldbesitzern anderseits. Naturschutzvereine bevorzugen das Einstellen der Waldbewirtschaftung, aber auch die aktuelle Waldbaustrategie, mit mäßiger Durchforstungsintensität und einem hohen Anteil an Eichenbeständen entspricht ihren Zielsetzungen. Dagegen lag die Präferenz der Landeswaldförster sowie privaten Waldbesitzer auf einer Walbaustrategie mit einem hohen Anteil an Kiefernbeständen, um den Ertrag unter Beachtung der anderen Waldfunktionen zu steigern. Als Fazit geht aus dieser Teilstudie hervor, dass die Bewertung von Waldbaustrategien hinsichtlich ihrer Eignung für eine multifunktionale Waldbewirtschaftung unter Beachtung von Ansprüchen verschiedener Interessengruppen und ungewissen klimatischen Bedingungen unter Verwendung von 4C und einer multikriteriellen Analysemethode sehr gut möglich ist. Besonderes Augenmerk galt dem Einfluss von Waldbaustrategien auf den Kohlenstoffkreislauf, wobei nicht nur die Kohlenstoffspeicherung im Wald, sondern auch in Holzprodukten, sowie die Verringerung von CO2-Emissionen durch energetische und stoffliche Nutzung von Holz betrachtet wurden. Die potentielle Reduktion von CO2-Emissionen durch das Ersetzen von Erzeugnissen und Energie aus nicht nachwachsenden Rohstoffen durch Holz (Smat und Sen) wurde basierend auf Daten verschiedener Studien geschätzt. Eine Sensitivitätsanalyse untersuchte Unsicherheiten bei der Initialisierung des WPMs und der Berechung von Smat. Verschiedene Szenarien führten zu einem besseren Verständnis dafür, wie sich Änderungen im Energiesektor und Holzproduktsektor auf das Potential, Kohlenstoff zu speichern bzw. CO2-Emissionen zu verringen auswirken. Die Ergebnisse zeigen, dass die Reduzierung von CO2-Emissionen im Holzproduktsektor durch die Nutzung von Holz als Werkstoff und Brennstoff höher ist als durch die Akkumulation von Kohlenstoff im Wald. Im Gegensatz zu den Kohlenstoffspeichern im Wald, die sowohl Quellen als auch Senken sein können, werden durch die Nutzung von Holz CO2-Emissionen verringert, solange im Zuge der Waldbewirtschaftung Holz für die Weiterverarbeitung zur Verfügung gestellt wird. Simulationen auf Bundesebene ergaben, dass in Deutschland die Forst- und Holzwirtschaft jährlich dazu beitragen die CO2-Emissionen um 19,9 Mt Kohlenstoff zu verringern, wobei 70% auf die Holzindustrie und den Substitutionseffekt entfallen. KW - Kohlenstoffspeicherung KW - Waldwachstumsmodell 4C KW - Holzprodukte KW - Klimawandel KW - carbon sequestration KW - forest growth model 4C KW - wood products KW - climate change Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-27657 ER - TY - JOUR A1 - Drewes, Julia A1 - Moreiras, Stella A1 - Korup, Oliver T1 - Permafrost activity and atmospheric warming in the Argentinian Andes JF - Geomorphology : an international journal on pure and applied geomorphology N2 - Rock glaciers are permafrost or glacial landforms of debris and ice that deform under the influence of gravity. Recent estimates hold that, in the semiarid Chilean Andes for example, active rock glaciers store more water than glaciers. However, little is known about how many rock glaciers might decay because of global warming and how much this decay might contribute to water and sediment release. We investigated an inventory of >6500 rock glaciers in the Argentinian Andes, spanning the climatic gradient from the Desert Andes to cold-temperate Tierra del Fuego. We used active rock glaciers as a diagnostic of permafrost, assuming that the toes mark the 0 degrees C isotherm in climate scenarios for the twenty-first century and their impact on freezing conditions near the rock glacier toes. We find that, under future worst case warming, up to 95% of rock glaciers in the southern Desert Andes and in the Central Andes will rest in areas above 0 degrees C and that this freezing level might move up more than twice as much (similar to 500 m) as during the entire Holocene (similar to 200 m). Many active rock glaciers are already well below the current freezing level and exemplify how local controls may confound regional prognoses. A Bayesian Multifactor Analysis of Variance further shows that only in the Central Andes are the toes of active rock glaciers credibly higher than those of inactive ones. Elsewhere in the Andes, active and inactive rock glaciers occupy indistinguishable elevation bands, regardless of aspect, the formation mechanism, or shape of rock glaciers. The state of rock glacier activity predicts differences in elevations of toes to 140 m at best so that regional inference of the distribution of discontinuous permafrost from rock-glacier toes cannot be more accurate than this in the Argentinian Andes. We conclude that the Central Andes-where rock glaciers are largest, cover the most area, and have a greater density than glaciers-is likely to experience the most widespread disturbance to the thermal regime of the twenty-first century. (C) 2018 Elsevier B.V. All rights reserved. KW - rock glacier KW - Argentina KW - permafrost KW - climate change Y1 - 2018 U6 - https://doi.org/10.1016/j.geomorph.2018.09.005 SN - 0169-555X SN - 1872-695X VL - 323 SP - 13 EP - 24 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Ayzel, Georgy A1 - Izhitskiy, Alexander T1 - Climate change impact assessment on freshwater inflow into the Small Aral Sea T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - During the last few decades, the rapid separation of the Small Aral Sea from the isolated basin has changed its hydrological and ecological conditions tremendously. In the present study, we developed and validated the hybrid model for the Syr Darya River basin based on a combination of state-of-the-art hydrological and machine learning models. Climate change impact on freshwater inflow into the Small Aral Sea for the projection period 2007–2099 has been quantified based on the developed hybrid model and bias corrected and downscaled meteorological projections simulated by four General Circulation Models (GCM) for each of three Representative Concentration Pathway scenarios (RCP). The developed hybrid model reliably simulates freshwater inflow for the historical period with a Nash–Sutcliffe efficiency of 0.72 and a Kling–Gupta efficiency of 0.77. Results of the climate change impact assessment showed that the freshwater inflow projections produced by different GCMs are misleading by providing contradictory results for the projection period. However, we identified that the relative runoff changes are expected to be more pronounced in the case of more aggressive RCP scenarios. The simulated projections of freshwater inflow provide a basis for further assessment of climate change impacts on hydrological and ecological conditions of the Small Aral Sea in the 21st Century. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1071 KW - Small Aral Sea KW - hydrology KW - climate change KW - modeling KW - machine learning Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472794 SN - 1866-8372 IS - 1071 ER - TY - JOUR A1 - Ayzel, Georgy A1 - Izhitskiy, Alexander T1 - Climate Change Impact Assessment on Freshwater Inflow into the Small Aral Sea JF - Water N2 - During the last few decades, the rapid separation of the Small Aral Sea from the isolated basin has changed its hydrological and ecological conditions tremendously. In the present study, we developed and validated the hybrid model for the Syr Darya River basin based on a combination of state-of-the-art hydrological and machine learning models. Climate change impact on freshwater inflow into the Small Aral Sea for the projection period 2007-2099 has been quantified based on the developed hybrid model and bias corrected and downscaled meteorological projections simulated by four General Circulation Models (GCM) for each of three Representative Concentration Pathway scenarios (RCP). The developed hybrid model reliably simulates freshwater inflow for the historical period with a Nash-Sutcliffe efficiency of 0.72 and a Kling-Gupta efficiency of 0.77. Results of the climate change impact assessment showed that the freshwater inflow projections produced by different GCMs are misleading by providing contradictory results for the projection period. However, we identified that the relative runoff changes are expected to be more pronounced in the case of more aggressive RCP scenarios. The simulated projections of freshwater inflow provide a basis for further assessment of climate change impacts on hydrological and ecological conditions of the Small Aral Sea in the 21st Century. KW - Small Aral Sea KW - hydrology KW - climate change KW - modeling KW - machine learning Y1 - 2019 U6 - https://doi.org/10.3390/w11112377 SN - 2073-4441 VL - 11 IS - 11 PB - MDPI CY - Basel ER -