TY - JOUR A1 - Kikstra, Jarmo S. A1 - Nicholls, Zebedee R. J. A1 - Smith, Christopher J. A1 - Lewis, Jared A1 - Lamboll, Robin D. A1 - Byers, Edward A1 - Sandstad, Marit A1 - Meinshausen, Malte A1 - Gidden, Matthew J. A1 - Rogelj, Joeri A1 - Kriegler, Elmar A1 - Peters, Glen P. A1 - Fuglestvedt, Jan S. A1 - Skeie, Ragnhild B. A1 - Samset, Bjørn H. A1 - Wienpahl, Laura A1 - van Vuuren, Detlef P. A1 - van der Wijst, Kaj-Ivar A1 - Al Khourdajie, Alaa A1 - Forster, Piers M. A1 - Reisinger, Andy A1 - Schaeffer, Roberto A1 - Riahi, Keywan T1 - The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways BT - from emissions to global temperatures JF - Geoscientific model development N2 - While the Intergovernmental Panel on Climate Change (IPCC) physical science reports usually assess a handful of future scenarios, the Working Group III contribution on climate mitigation to the IPCC's Sixth Assessment Report (AR6 WGIII) assesses hundreds to thousands of future emissions scenarios. A key task in WGIII is to assess the global mean temperature outcomes of these scenarios in a consistent manner, given the challenge that the emissions scenarios from different integrated assessment models (IAMs) come with different sectoral and gas-to-gas coverage and cannot all be assessed consistently by complex Earth system models. In this work, we describe the “climate-assessment” workflow and its methods, including infilling of missing emissions and emissions harmonisation as applied to 1202 mitigation scenarios in AR6 WGIII. We evaluate the global mean temperature projections and effective radiative forcing (ERF) characteristics of climate emulators FaIRv1.6.2 and MAGICCv7.5.3 and use the CICERO simple climate model (CICERO-SCM) for sensitivity analysis. We discuss the implied overshoot severity of the mitigation pathways using overshoot degree years and look at emissions and temperature characteristics of scenarios compatible with one possible interpretation of the Paris Agreement. We find that the lowest class of emissions scenarios that limit global warming to “1.5 ∘C (with a probability of greater than 50 %) with no or limited overshoot” includes 97 scenarios for MAGICCv7.5.3 and 203 for FaIRv1.6.2. For the MAGICCv7.5.3 results, “limited overshoot” typically implies exceedance of median temperature projections of up to about 0.1 ∘C for up to a few decades before returning to below 1.5 ∘C by or before the year 2100. For more than half of the scenarios in this category that comply with three criteria for being “Paris-compatible”, including net-zero or net-negative greenhouse gas (GHG) emissions, median temperatures decline by about 0.3–0.4 ∘C after peaking at 1.5–1.6 ∘C in 2035–2055. We compare the methods applied in AR6 with the methods used for SR1.5 and discuss their implications. This article also introduces a “climate-assessment” Python package which allows for fully reproducing the IPCC AR6 WGIII temperature assessment. This work provides a community tool for assessing the temperature outcomes of emissions pathways and provides a basis for further work such as extending the workflow to include downscaling of climate characteristics to a regional level and calculating impacts. Y1 - 2022 U6 - https://doi.org/10.5194/gmd-15-9075-2022 SN - 1991-959X SN - 1991-9603 VL - 15 IS - 24 SP - 9075 EP - 9109 PB - Copernicus CY - Katlenburg-Lindau ER - TY - JOUR A1 - Riahi, Keywan A1 - Bertram, Christoph A1 - Huppmann, Daniel A1 - Rogelj, Joeri A1 - Bosetti, Valentina A1 - Cabardos, Anique-Marie A1 - Deppermann, Andre A1 - Drouet, Laurent A1 - Frank, Stefan A1 - Fricko, Oliver A1 - Fujimori, Shinichiro A1 - Harmsen, Mathijs A1 - Hasegawa, Tomoko A1 - Krey, Volker A1 - Luderer, Gunnar A1 - Paroussos, Leonidas A1 - Schaeffer, Roberto A1 - Weitzel, Matthias A1 - van der Zwaan, Bob A1 - Vrontisi, Zoi A1 - Longa, Francesco Dalla A1 - Després, Jacques A1 - Fosse, Florian A1 - Fragkiadakis, Kostas A1 - Gusti, Mykola A1 - Humpenöder, Florian A1 - Keramidas, Kimon A1 - Kishimoto, Paul A1 - Kriegler, Elmar A1 - Meinshausen, Malte A1 - Nogueira, Larissa Pupo A1 - Oshiro, Ken A1 - Popp, Alexander A1 - Rochedo, Pedro R. R. A1 - Ünlü, Gamze A1 - van Ruijven, Bas A1 - Takakura, Junya A1 - Tavoni, Massimo A1 - van Vuuren, Detlef P. A1 - Zakeri, Behnam T1 - Cost and attainability of meeting stringent climate targets without overshoot JF - Nature climate change N2 - Global emissions scenarios play a critical role in the assessment of strategies to mitigate climate change. The current scenarios, however, are criticized because they feature strategies with pronounced overshoot of the global temperature goal, requiring a long-term repair phase to draw temperatures down again through net-negative emissions. Some impacts might not be reversible. Hence, we explore a new set of net-zero CO2 emissions scenarios with limited overshoot. We show that upfront investments are needed in the near term for limiting temperature overshoot but that these would bring long-term economic gains. Our study further identifies alternative configurations of net-zero CO2 emissions systems and the roles of different sectors and regions for balancing sources and sinks. Even without net-negative emissions, CO2 removal is important for accelerating near-term reductions and for providing an anthropogenic sink that can offset the residual emissions in sectors that are hard to abate. Y1 - 2021 U6 - https://doi.org/10.1038/s41558-021-01215-2 SN - 1758-678X SN - 1758-6798 VL - 11 IS - 12 SP - 1063 EP - 1069 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Levermann, Anders A1 - Winkelmann, Ricarda A1 - Nowicki, S. A1 - Fastook, J. L. A1 - Frieler, Katja A1 - Greve, R. A1 - Hellmer, H. H. A1 - Martin, M. A. A1 - Meinshausen, Malte A1 - Mengel, Matthias A1 - Payne, A. J. A1 - Pollard, D. A1 - Sato, T. A1 - Timmermann, R. A1 - Wang, Wei Li A1 - Bindschadler, Robert A. T1 - Projecting antarctic ice discharge using response functions from SeaRISE ice-sheet models JF - Earth system dynamics N2 - The largest uncertainty in projections of future sea-level change results from the potentially changing dynamical ice discharge from Antarctica. Basal ice-shelf melting induced by a warming ocean has been identified as a major cause for additional ice flow across the grounding line. Here we attempt to estimate the uncertainty range of future ice discharge from Antarctica by combining uncertainty in the climatic forcing, the oceanic response and the ice-sheet model response. The uncertainty in the global mean temperature increase is obtained from historically constrained emulations with the MAGICC-6.0 (Model for the Assessment of Greenhouse gas Induced Climate Change) model. The oceanic forcing is derived from scaling of the subsurface with the atmospheric warming from 19 comprehensive climate models of the Coupled Model Intercomparison Project (CMIP-5) and two ocean models from the EU-project Ice2Sea. The dynamic ice-sheet response is derived from linear response functions for basal ice-shelf melting for four different Antarctic drainage regions using experiments from the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. The resulting uncertainty range for the historic Antarctic contribution to global sea-level rise from 1992 to 2011 agrees with the observed contribution for this period if we use the three ice-sheet models with an explicit representation of ice-shelf dynamics and account for the time-delayed warming of the oceanic subsurface compared to the surface air temperature. The median of the additional ice loss for the 21st century is computed to 0.07 m (66% range: 0.02-0.14 m; 90% range: 0.0-0.23 m) of global sea-level equivalent for the low-emission RCP-2.6 (Representative Concentration Pathway) scenario and 0.09 m (66% range: 0.04-0.21 m; 90% range: 0.01-0.37 m) for the strongest RCP-8.5. Assuming no time delay between the atmospheric warming and the oceanic subsurface, these values increase to 0.09 m (66% range: 0.04-0.17 m; 90% range: 0.02-0.25 m) for RCP-2.6 and 0.15 m (66% range: 0.07-0.28 m; 90% range: 0.04-0.43 m) for RCP-8.5. All probability distributions are highly skewed towards high values. The applied ice-sheet models are coarse resolution with limitations in the representation of grounding-line motion. Within the constraints of the applied methods, the uncertainty induced from different ice-sheet models is smaller than that induced by the external forcing to the ice sheets. Y1 - 2014 U6 - https://doi.org/10.5194/esd-5-271-2014 SN - 2190-4979 SN - 2190-4987 VL - 5 IS - 2 SP - 271 EP - 293 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Schleussner, Carl-Friedrich A1 - Levermann, Anders A1 - Meinshausen, Malte T1 - Probabilistic projections of the Atlantic overturning JF - Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change N2 - Changes in the Atlantic overturning circulation have a strong influence on European temperatures, North American sea level and other climate phenomena worldwide. A meaningful assessment of associated societal impacts needs to be based on the full range of its possible future evolution. This requires capturing both the uncertainty in future warming pathways and the inherently long-term response of the ocean circulation. While probabilistic projections of the global mean and regional temperatures exist, process-based probabilistic assessments of large-scale dynamical systems such as the Atlantic overturning are still missing. Here we present such an assessment and find that a reduction of more than 50 % in Atlantic overturning strength by the end of the 21 (s t) century is within the likely range under an unmitigated climate change scenario (RCP8.5). By combining linear response functions derived from comprehensive climate simulations with the full range of possible future warming pathways, we provide probability estimates of overturning changes by the year 2100. A weakening of more than 25 % is found to be very unlikely under a climate protection scenario (RCP2.6), but likely for unmitigated climate change. The method is able to reproduce the modelled recovery caused by climatic equilibration under climate protection scenarios which provides confidence in the approach. Within this century, a reduction of the Atlantic overturning is a robust climatic phenomena that intensifies with global warming and needs to be accounted for in global adaptation strategies. Y1 - 2014 U6 - https://doi.org/10.1007/s10584-014-1265-2 SN - 0165-0009 SN - 1573-1480 VL - 127 IS - 3-4 SP - 579 EP - 586 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Schleussner, Carl-Friedrich A1 - Frieler, Katja A1 - Meinshausen, Malte A1 - Yin, J. A1 - Levermann, Anders T1 - Emulating Atlantic overturning strength for low emission scenarios consequences for sea-level rise along the North American east coast JF - Earth system dynamics N2 - In order to provide probabilistic projections of the future evolution of the Atlantic Meridional Overturning Circulation (AMOC), we calibrated a simple Stommel-type box model to emulate the output of fully coupled three-dimensional atmosphere-ocean general circulation models (AOGCMs) of the Coupled Model Intercomparison Project (CMIP). Based on this calibration to idealised global warming scenarios with and without interactive atmosphere-ocean fluxes and freshwater perturbation simulations, we project the future evolution of the AMOC mean strength within the covered calibration range for the lower two Representative Concentration Pathways (RCPs) until 2100 obtained from the reduced complexity carbon cycle-climate model MAGICC 6. For RCP3-PD with a global mean temperature median below 1.0 degrees C warming relative to the year 2000, we project an ensemble median weakening of up to 11% compared to 22% under RCP4.5 with a warming median up to 1.9 degrees C over the 21st century. Additional Greenland meltwater of 10 and 20 cm of global sea-level rise equivalent further weakens the AMOC by about 4.5 and 10 %, respectively. By combining our outcome with a multi-model sea-level rise study we project a dynamic sea-level rise along the New York City coastline of 4 cm for the RCP3-PD and of 8 cm for the RCP4.5 scenario over the 21st century. We estimate the total steric and dynamic sea-level rise for New York City to be about 24 cm until 2100 for the RCP3-PD scenario, which can hold as a lower bound for sea-level rise projections in this region, as it does not include ice sheet and mountain glacier contributions. Y1 - 2011 U6 - https://doi.org/10.5194/esd-2-191-2011 SN - 2190-4979 SN - 2190-4987 VL - 2 IS - 2 SP - 191 EP - 200 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Schewe, Jacob A1 - Levermann, Anders A1 - Meinshausen, Malte T1 - Climate change under a scenario near 1.5 degrees C of global warming: monsoon intensification, ocean warming and steric sea level rise JF - Earth system dynamics N2 - We present climatic consequences of the Representative Concentration Pathways (RCPs) using the coupled climate model CLIMBER-3 alpha, which contains a statistical-dynamical atmosphere and a three-dimensional ocean model. We compare those with emulations of 19 state-of-the-art atmosphere-ocean general circulation models (AOGCM) using MAGICC6. The RCPs are designed as standard scenarios for the forthcoming IPCC Fifth Assessment Report to span the full range of future greenhouse gas (GHG) concentrations pathways currently discussed. The lowest of the RCP scenarios, RCP3-PD, is projected in CLIMBER-3 alpha to imply a maximal warming by the middle of the 21st century slightly above 1.5 degrees C and a slow decline of temperatures thereafter, approaching today's level by 2500. We identify two mechanisms that slow down global cooling after GHG concentrations peak: The known inertia induced by mixing-related oceanic heat uptake; and a change in oceanic convection that enhances ocean heat loss in high latitudes, reducing the surface cooling rate by almost 50%. Steric sea level rise under the RCP3-PD scenario continues for 200 years after the peak in surface air temperatures, stabilizing around 2250 at 30 cm. This contrasts with around 1.3 m of steric sea level rise by 2250, and 2 m by 2500, under the highest scenario, RCP8.5. Maximum oceanic warming at intermediate depth (300-800 m) is found to exceed that of the sea surface by the second half of the 21st century under RCP3-PD. This intermediate-depth warming persists for centuries even after surface temperatures have returned to present-day values, with potential consequences for marine ecosystems, oceanic methane hydrates, and ice-shelf stability. Due to an enhanced land-ocean temperature contrast, all scenarios yield an intensification of monsoon rainfall under global warming. Y1 - 2011 U6 - https://doi.org/10.5194/esd-2-25-2011 SN - 2190-4979 SN - 2190-4987 VL - 2 IS - 1 SP - 25 EP - 35 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Schneider von Deimling, Thomas A1 - Meinshausen, Malte A1 - Levermann, Anders A1 - Huber, Veronika A1 - Frieler, Katja A1 - Lawrence, D. M. A1 - Brovkin, Victor T1 - Estimating the near-surface permafrost-carbon feedback on global warming JF - Biogeosciences N2 - Thawing of permafrost and the associated release of carbon constitutes a positive feedback in the climate system, elevating the effect of anthropogenic GHG emissions on global-mean temperatures. Multiple factors have hindered the quantification of this feedback, which was not included in climate carbon-cycle models which participated in recent model intercomparisons (such as the Coupled Carbon Cycle Climate Model Intercomparison Project - (CMIP)-M-4). There are considerable uncertainties in the rate and extent of permafrost thaw, the hydrological and vegetation response to permafrost thaw, the decomposition timescales of freshly thawed organic material, the proportion of soil carbon that might be emitted as carbon dioxide via aerobic decomposition or as methane via anaerobic decomposition, and in the magnitude of the high latitude amplification of global warming that will drive permafrost degradation. Additionally, there are extensive and poorly characterized regional heterogeneities in soil properties, carbon content, and hydrology. Here, we couple a new permafrost module to a reduced complexity carbon-cycle climate model, which allows us to perform a large ensemble of simulations. The ensemble is designed to span the uncertainties listed above and thereby the results provide an estimate of the potential strength of the feedback from newly thawed permafrost carbon. For the high CO2 concentration scenario (RCP8.5), 33-114 GtC (giga tons of Carbon) are released by 2100 (68% uncertainty range). This leads to an additional warming of 0.04-0.23 degrees C. Though projected 21st century permafrost carbon emissions are relatively modest, ongoing permafrost thaw and slow but steady soil carbon decomposition means that, by 2300, about half of the potentially vulnerable permafrost carbon stock in the upper 3 m of soil layer (600-1000 GtC) could be released as CO2, with an extra 1-4% being released as methane. Our results also suggest that mitigation action in line with the lower scenario RCP3-PD could contain Arctic temperature increase sufficiently that thawing of the permafrost area is limited to 9-23% and the permafrost-carbon induced temperature increase does not exceed 0.04-0.16 degrees C by 2300. Y1 - 2012 U6 - https://doi.org/10.5194/bg-9-649-2012 SN - 1726-4170 SN - 1726-4189 VL - 9 IS - 2 SP - 649 EP - 665 PB - Copernicus CY - Göttingen ER -