TY - JOUR A1 - Ramos-Larios, Gerardo A1 - Toala, Jesús Alberto A1 - Rodriguez-Gonzalez, Janis B. A1 - Guerrero, Martin A. A1 - Gomez-Gonzalez, Víctor Mauricio Alfonso T1 - Rings and arcs around evolved stars - III. Physical conditions of the ring-like structures in the planetary nebula IC 4406 revealed by MUSE JF - Monthly notices of the Royal Astronomical Society N2 - We present the analysis of Very Large Telescope Multi Unit Spectroscopic Explorer (MUSE) observations of the planetary nebula (PN) IC 4406. MUSE images in key emission lines are used to unveil the presence of at least five ring-like structures north and south of the main nebula of IC4406. MUSE spectra are extracted from the rings to unambiguously assess for the first time in a PN their physical conditions, electron density (n(e)), and temperature (T-e). The rings are found to have similar T-e as the rim of the main nebula, but smaller n(e). Ratios between different ionic species suggest that the rings of IC4406 have a lower ionization state than the main cavity, in contrast to what was suggested for the rings in NGC 6543, the Cat's Eye Nebula. KW - stars: evolution KW - stars: winds, outflows KW - planetary nebulae: general; KW - planetary nebulae: individual: IC4406 Y1 - 2022 SN - 0035-8711 SN - 1365-2966 VL - 513 IS - 2 SP - 2862 EP - 2868 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Guerrero, Martin A. A1 - Fang, Xuan A1 - Miller Bertolami, Marcelo Miguel A1 - Ramos-Larios, Gerardo A1 - Todt, Helge Tobias A1 - Alarie, Alexandre A1 - Sabin, Laurence A1 - Miranda, Luis F. A1 - Morisset, Christophe A1 - Kehrig, Carolina A1 - Zavala, Saul A. T1 - The inside-out planetary nebula around a born-again star JF - Nature Astronomy N2 - Planetary nebulae are ionized clouds of gas formed by the hydrogen-rich envelopes of low- and intermediate-mass stars ejected at late evolutionary stages. The strong UV flux from their central stars causes a highly stratified ionization structure, with species of higher ionization potential closer to the star. Here, we report on the exceptional case of HuBi 1, a double-shell planetary nebula whose inner shell presents emission from low-ionization species close to the star and emission from high-ionization species farther away. Spectral analysis demonstrates that the inner shell of HuBi 1 is excited by shocks, whereas its outer shell is recombining. The anomalous excitation of these shells can be traced to its low-temperature [WC10] central star whose optical brightness has declined continuously by 10 magnitudes in a period of 46 years. Evolutionary models reveal that this star is the descendant of a low-mass star (≃1.1 M⊙) that has experienced a ‘born-again’ event1 whose ejecta shock-excite the inner shell. HuBi 1 represents the missing link in the formation of metal-rich central stars of planetary nebulae from low-mass progenitors, offering unique insight regarding the future evolution of the born-again Sakurai’s object2. Coming from a solar-mass progenitor, HuBi 1 represents a potential end-state for our Sun. KW - Astronomy and astrophysics KW - Astronomy and planetary science KW - Interstellar medium KW - Stars KW - Stellar evolution Y1 - 2018 U6 - https://doi.org/10.1038/s41550-018-0551-8 SN - 2397-3366 VL - 2 IS - 10 SP - 784 EP - 789 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Toalá, Jesús Alberto A1 - Ramos-Larios, Gerardo A1 - Guerrero, Martin A. A1 - Todt, Helge Tobias T1 - Hidden IR structures in NGC40 BT - Signpost of an ancient born-again event JF - Monthly notices of the Royal Astronomical Society N2 - We present the analysis of infrared (IR) observations of the planetary nebula NGC40 together with spectral analysis of its [WC]-type central starHD826. Spitzer IRS observations were used to produce spectral maps centred at polycyclic aromatic hydrocarbons (PAH) bands and ionic transitions to compare their spatial distribution. The ionic lines show a clumpy distribution of material around the main cavity of NGC40, with the emission from [Ar II] being the most extended, whilst the PAHs show a rather smooth spatial distribution. Analysis of ratio maps shows the presence of a toroidal structure mainly seen in PAH emission, but also detected in a Herschel PACS 70 mu m image. We argue that the toroidal structure absorbs the UV flux from HD826, preventing the nebula to exhibit lines of high-excitation levels as suggested by previous authors. We discuss the origin of this structure and the results from the spectral analysis of HD826 under the scenario of a late thermal pulse. KW - stars: carbon KW - stars: evolution KW - stars: winds, outflows KW - ISM: molecules KW - planetary nebulae: individual: NGC40 KW - infrared: ISM Y1 - 2019 U6 - https://doi.org/10.1093/mnras/stz624 SN - 0035-8711 SN - 1365-2966 VL - 485 IS - 3 SP - 3360 EP - 3369 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Toala, Jesús Alberto A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer A1 - Ignace, Richard A1 - Sander, Andreas Alexander Christoph A1 - Shenar, Tomer A1 - Todt, Helge Tobias A1 - Chu, Y. -H. A1 - Guerrero, Martin A. A1 - Hainich, Rainer A1 - Torrejon, Jose Miguel T1 - On the Apparent Absence of Wolf-Rayet plus Neutron Star Systems BT - the Curious Case of WR124 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters N2 - Among the different types of massive stars in advanced evolutionary stages is the enigmatic WN8h type. There are only a few Wolf-Rayet (WR) stars with this spectral type in our Galaxy. It has long been suggested that WN8h-type stars are the products of binary evolution that may harbor neutron stars (NS). One of the most intriguing WN8h stars is the runaway WR 124 surrounded by its magnificent nebula M1-67. We test the presence of an accreting NS companion in WR 124 using similar to 100 ks long observations by the Chandra X-ray observatory. The hard X-ray emission from WR 124 with a luminosity of L-X similar to 10(31) erg s(-1) is marginally detected. We use the non-local thermodynamic equilibrium stellar atmosphere code PoWR to estimate the WR wind opacity to the X-rays. The wind of a WN8-type star is effectively opaque for X-rays, hence the low X-ray luminosity of WR 124 does not rule out the presence of an embedded compact object. We suggest that, in general, high-opacity WR winds could prevent X-ray detections of embedded NS, and be an explanation for the apparent lack of WR+NS systems. KW - circumstellar matter KW - ISM: jets and outflows KW - stars: massive KW - stars: evolution KW - stars: neutron KW - stars: Wolf-Rayet Y1 - 2018 U6 - https://doi.org/10.3847/2041-8213/aaf39d SN - 2041-8205 SN - 2041-8213 VL - 869 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER -