TY - JOUR A1 - Öztürk, Ugur A1 - Bozzolan, Elisa A1 - Holcombe, Elizabeth A. A1 - Shukla, Roopam A1 - Pianosi, Francesca A1 - Wagener, Thorsten T1 - How climate change and unplanned urban sprawl bring more landslides JF - Nature : the international weekly journal of science N2 - More settlements will suffer as heavy rains and unregulated construction destabilize slopes in the tropics, models show. KW - Geophysics KW - Engineering KW - Climate change KW - Policy Y1 - 2022 U6 - https://doi.org/10.1038/d41586-022-02141-9 SN - 0028-0836 SN - 1476-4687 VL - 608 IS - 7922 SP - 262 EP - 265 PB - Nature portfolio CY - Berlin ER - TY - JOUR A1 - Buter, Anuschka A1 - Heckmann, Tobias A1 - Filisetti, Lorenzo A1 - Savi, Sara A1 - Mao, Luca A1 - Gems, Bernhard A1 - Comiti, Francesco T1 - Effects of catchment characteristics and hydro-meteorological scenarios on sediment connectivity in glacierised catchments JF - Geomorphology : an international journal on pure and applied geomorphology N2 - In the past decade, sediment connectivity has become a widely recognized characteristic of a geomorphic system. However, the quantification of functional connectivity (i.e. connectivity which arises due to the actual occurrence of sediment transport processes) and its variation over space and time is still a challenge. In this context, this study assesses the effects of expected future phenomena in the context of climate change (i.e. glacier retreat, permafrost degradation or meteorological extreme events) on sediment transport dynamics in a glacierised Alpine basin. The study area is the Sulden river basin (drainage area 130 km(2)) in the Italian Alps, which is composed of two geomorphologically diverse sub-basins. Based on graph theory, we evaluated the spatio-temporal variations in functional connectivity in these two sub-basins. The graph-object, obtained by manually mapping sediment transport processes between landforms, was adapted to 6 different hydro-meteorological scenarios, which derive from combining base, heatwave and rainstorm conditions with snowmelt and glacier-melt periods. For each scenario and each sub-basin, the sediment transport network and related catchment characteristics were analysed. To compare the effects of the scenarios on functional connectivity, we introduced a connectivity degree, calculated based on the area of the landforms involved in sediment cascades. Results indicate that the area of the basin connected to its outlet in terms of sediment transport might feature a six-fold increase in case of rainstorm conditions compared to "average " meteorological conditions assumed for the base scenario. Furthermore, markedly different effects of climate change on sediment connectivity are expected between the two sub-catchments due to their contrasting morphological and lithological characteristics, in terms of relative importance of rainfall triggered colluvial processes vs temperature-driven proglacial fluvial dynamics. KW - Functional connectivity KW - Graph theory KW - Climate change KW - Geomorphic systems Y1 - 2022 U6 - https://doi.org/10.1016/j.geomorph.2022.108128 SN - 0169-555X SN - 1872-695X VL - 402 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Fer, Istem A1 - Tietjen, Britta A1 - Jeltsch, Florian A1 - Trauth, Martin H. T1 - Modelling vegetation change during Late Cenozoic uplift of the East African plateaus JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - The present-day vegetation in the tropics is mainly characterized by forests worldwide except in tropical East Africa, where forests only occur as patches at the coast and in the uplands. These forest patches result from the peculiar aridity that is linked to the uplift of the region during the Late Cenozoic. The Late Cenozoic vegetation history of East Africa is of particular interest as it has set the scene for the contemporary events in mammal and hominin evolution. In this study, we investigate the conditions under which these forest patches could have been connected, and a previous continuous forest belt could have extended and fragmented. We apply a dynamic vegetation model with a set of climatic scenarios in which we systematically alter the present-day environmental conditions such that they would be more favourable for a continuous forest belt in tropical East Africa. We consider varying environmental factors, namely temperature, precipitation and atmospheric CO2 concentrations. Our results show that all of these variables play a significant role in supporting the forest biomes and a continuous forest belt could have occurred under certain combinations of these settings. With our current knowledge of the palaeoenvironmental history of East Africa, it is likely that the region hosted these conditions during the Late Cenozoic. Recent improvements on environmental hypotheses of hominin evolution highlight the role of periods of short and extreme climate variability during the Late Cenozoic specific to East Africa in driving evolution. Our results elucidate how the forest biomes of East Africa can appear and disappear under fluctuating environmental conditions and demonstrate how this climate variability might be recognized on the biosphere level. KW - Dynamic vegetation models KW - Palaeovegetation KW - Evolution KW - Late Cenozoic KW - East Africa KW - Climate change Y1 - 2016 U6 - https://doi.org/10.1016/j.palaeo.2016.04.007 SN - 0031-0182 SN - 1872-616X VL - 467 SP - 120 EP - 130 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Oguntunde, Philip G. A1 - Lischeid, Gunnar A1 - Abiodun, Babatunde Joseph T1 - Impacts of climate variability and change on drought characteristics in the Niger River Basin, West Africa JF - Stochastic Environmental Research and Risk Assessment N2 - West Africa has been afflicted by droughts since the declining rains of the 1970s. Therefore, this study examines the characteristics of drought over the Niger River Basin (NRB), investigates the influence of the drought on the river flow, and projects the impacts of future climate change on drought. A combination of observation data and regional climate simulations of past (1986-2005) and future climates (2046-2065 and 2081-2100) were analyzed. The standardized precipitation index (SPI) and standardized precipitation and evapotranspiration index (SPEI) were used to characterize drought while the standardized runoff index (SRI) was used to quantify river flow. Results of the study show that the historical pattern of drought is consistent with previous studies over the Basin and most part of West Africa. RCA4 ensemble gives realistic simulations of the climatology of the Basin in the past climate. Generally, an increase in drought intensity and frequency are projected over NRB. The coupling between SRI and drought indices was very strong (P < 0.05). The dominant peaks can be classified into three distinct drought cycles with periods 1-2, 2-4, 4-8 years. These cycles may be associated with Quasi-Biennial Oscillation (QBO) and El-Nino Southern Oscillation (ENSO). River flow was highly sensitive to precipitation in the NRB and a 1-3 month lead time was found between drought indices and SRI. Under RCP4.5, changes in the SPEI drought frequency range from 1.8 (2046-2065) to 2.4 (2081-2100) month year(-1) while under RCP8.5, the change ranges from 2.2 (2046-2065) to 3.0 month year(-1) (2081-2100). Niger Middle sub-basin is likely to be mostly impacted in the future while the Upper Niger was projected to be least impacted. Results of this study may guide policymakers to evolve strategies to facilitate vulnerability assessment and adaptive capacity of the basin in order to minimize the negative impacts of climate change. KW - Drought indices KW - Water management KW - Climate change KW - River flow KW - Niger River Basin Y1 - 2018 U6 - https://doi.org/10.1007/s00477-017-1484-y SN - 1436-3240 SN - 1436-3259 VL - 32 IS - 4 SP - 1017 EP - 1034 PB - Springer CY - New York ER - TY - JOUR A1 - Lawrence, Mark A1 - Schäfer, Stefan A1 - Muri, Helene A1 - Scott, Vivian A1 - Oschlies, Andreas A1 - Vaughan, Naomi E. A1 - Boucher, Olivier A1 - Schmidt, Hauke A1 - Haywood, Jim A1 - Scheffran, Jürgen T1 - Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals JF - Nature Communications N2 - Current mitigation efforts and existing future commitments are inadequate to accomplish the Paris Agreement temperature goals. In light of this, research and debate are intensifying on the possibilities of additionally employing proposed climate geoengineering technologies, either through atmospheric carbon dioxide removal or farther-reaching interventions altering the Earth’s radiative energy budget. Although research indicates that several techniques may eventually have the physical potential to contribute to limiting climate change, all are in early stages of development, involve substantial uncertainties and risks, and raise ethical and governance dilemmas. Based on present knowledge, climate geoengineering techniques cannot be relied on to significantly contribute to meeting the Paris Agreement temperature goals. KW - Atmospheric chemistry KW - Atmospheric dynamics KW - Atmospheric science KW - Climate change KW - Environmental impact Y1 - 2018 U6 - https://doi.org/10.1038/s41467-018-05938-3 SN - 2041-1723 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Hudson, Paul T1 - A comparison of definitions of affordability for flood risk adaption measures BT - a case study of current and future risk-based flood insurance premiums in Europe JF - Mitigation and adaptation strategies for global change : an international journal devoted to scientific, engineering, socio-economic and policy responses to environmental change N2 - Risk-based insurance is a commonly proposed and discussed flood risk adaptation mechanism in policy debates across the world such as in the United Kingdom and the United States of America. However, both risk-based premiums and growing risk pose increasing difficulties for insurance to remain affordable. An empirical concept of affordability is required as the affordability of adaption strategies is an important concern for policymakers, yet such a concept is not often examined. Therefore, a robust metric with a commonly acceptable affordability threshold is required. A robust metric allows for a previously normative concept to be quantified in monetary terms, and in this way, the metric is rendered more suitable for integration into public policy debates. This paper investigates the degree to which risk-based flood insurance premiums are unaffordable in Europe. In addition, this paper compares the outcomes generated by three different definitions of unaffordability in order to investigate the most robust definition. In doing so, the residual income definition was found to be the least sensitive to changes in the threshold. While this paper focuses on Europe, the selected definition can be employed elsewhere in the world and across adaption measures in order to develop a common metric for indicating the potential unaffordability problem. KW - Flood risk KW - Insurance KW - Affordability KW - Climate change KW - Adaptation KW - Public policy Y1 - 2018 U6 - https://doi.org/10.1007/s11027-017-9769-5 SN - 1381-2386 SN - 1573-1596 VL - 23 IS - 7 SP - 1019 EP - 1038 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Hudson, Paul A1 - Botzen, W. J. Wouter A1 - Poussin, Jennifer A1 - Aerts, Jeroen C. J. H. T1 - Impacts of flooding and flood preparedness on subjective well-being BT - a monetisation of the tangible and intangible impacts JF - Journal of Happiness Studies N2 - Flood disasters severely impact human subjective well-being (SWB). Nevertheless, few studies have examined the influence of flood events on individual well-being and how such impacts may be limited by flood protection measures. This study estimates the long term impacts on individual subjective well-being of flood experiences, individual subjective flood risk perceptions, and household flood preparedness decisions. These effects are monetised and placed in context through a comparison with impacts of other adverse events on well-being. We collected data from households in flood-prone areas in France. The results indicate that experiencing a flood has a large negative impact on subjective well-being that is incompletely attenuated over time. Moreover, individuals do not need to be directly affected by floods to suffer SWB losses since subjective well-being is lower for those who expect their flood risk to increase or who have seen a neighbour being flooded. Floodplain inhabitants who prepared for flooding by elevating their home have a higher subjective well-being. A monetisation of the aforementioned well-being impacts shows that a flood requires Euro150,000 in immediate compensation to attenuate SWB losses. The decomposition of the monetised impacts of flood experience into tangible losses and intangible effects on SWB shows that intangible effects are about twice as large as the tangible direct monetary flood losses. Investments in flood protection infrastructure may be under funded if the intangible SWB benefits of flood protection are not taken into account. KW - Flooding KW - Subjective well-being KW - Intangible losses KW - Tangible losses KW - Climate change KW - Adaptation KW - Climate change adaptation Y1 - 2017 U6 - https://doi.org/10.1007/s10902-017-9916-4 SN - 1389-4978 SN - 1573-7780 VL - 20 IS - 2 SP - 665 EP - 682 PB - Springer Science CY - Dordrecht ER - TY - JOUR A1 - Veh, Georg A1 - Korup, Oliver A1 - von Specht, Sebastian A1 - Rößner, Sigrid A1 - Walz, Ariane T1 - Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya JF - Nature climate change N2 - Shrinking glaciers in the Hindu Kush-Karakoram-Himalaya-Nyainqentanglha (HKKHN) region have formed several thousand moraine-dammed glacial lakes(1-3), some of these having grown rapidly in past decades(3,4). This growth may promote more frequent and potentially destructive glacial lake outburst floods (GLOFs)(5-7). Testing this hypothesis, however, is confounded by incomplete databases of the few reliable, though selective, case studies. Here we present a consistent Himalayan GLOF inventory derived automatically from all available Landsat imagery since the late 1980s. We more than double the known GLOF count and identify the southern Himalayas as a hotspot region, compared to the more rarely affected Hindu Kush-Karakoram ranges. Nevertheless, the average annual frequency of 1.3 GLOFs has no credible posterior trend despite reported increases in glacial lake areas in most of the HKKHN3,8, so that GLOF activity per unit lake area has decreased since the late 1980s. We conclude that learning more about the frequency and magnitude of outburst triggers, rather than focusing solely on rapidly growing glacial lakes, might improve the appraisal of GLOF hazards. KW - Climate change KW - Cryospheric science KW - Environmental impact KW - Geomorphology Y1 - 2019 U6 - https://doi.org/10.1038/s41558-019-0437-5 SN - 1758-678X SN - 1758-6798 VL - 9 IS - 5 SP - 379 EP - 383 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Oguntunde, Philip G. A1 - Abiodun, Babatunde Joseph A1 - Lischeid, Gunnar T1 - Impacts of climate change on hydro-meteorological drought over the Volta Basin, West Africa JF - Global and planetary change N2 - This study examines the characteristics of drought in the Volta River Basin (VRB), investigates the influence of drought on the streamflow, and projects the impacts of future climate change on the drought. A combination of observation data and regional climate simulations of past and future climates (1970-2013, 2046-2065, and 2081-2100) were analyzed for the study. The Standardized Precipitation Index (SPI) and Standardized Precipitation and Evapotranspiration (SPEI) were used to characterize drought while the Standardized Runoff Index (SRI) were used to quantify runoff. Results of the study show that the historical pattern of drought is generally consistent with previous studies over the Basin and most part of West Africa. RCA ensemble medians (RMED) give realistic simulations of drought characteristics and area extent over the Basin and the sub-catchments in the past climate. Generally, an increase in drought intensity and spatial extent are projected over VRB for SPEI and SPI, but the magnitude of increase is higher with SPEI than with SPI. Drought frequency (events per decade) may be magnified by a factor of 1.2, (2046-2065) to 1.6 (2081-2100) compared to the present day episodes in the basin. The coupling between streamflow and drought episodes was very strong (P < 0.05) for the 1-16-year band before the 1970 but showed strong correlation all through the time series period for the 4-8 -years band. Runoff was highly sensitive to precipitation in the VRB and a 2-3 month time lag was found between drought indices and streamflow in the Volta River Basin. Results of this study may guide policymakers in planning how to minimize the negative impacts of future climate change that could have consequences on agriculture, water resources and energy supply. KW - Drought indices KW - Water management KW - Climate change KW - Streamfiow KW - Volta Basin Y1 - 2017 U6 - https://doi.org/10.1016/j.gloplacha.2017.07.003 SN - 0921-8181 SN - 1872-6364 VL - 155 SP - 121 EP - 132 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Norris, Jesse A1 - Carvalho, Leila M. V. A1 - Jones, Charles A1 - Cannon, Forest A1 - Bookhagen, Bodo A1 - Palazzi, Elisa A1 - Tahir, Adnan Ahmad T1 - The spatiotemporal variability of precipitation over the Himalaya: evaluation of one-year WRF model simulation JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - The Weather Research and Forecasting (WRF) model is used to simulate the spatiotemporal distribution of precipitation over central Asia over the year April 2005 through March 2006. Experiments are performed at 6.7 km horizontal grid spacing, with an emphasis on winter and summer precipitation over the Himalaya. The model and the Tropical Rainfall Measuring Mission show a similar inter-seasonal cycle of precipitation, from extratropical cyclones to monsoon precipitation, with agreement also in the diurnal cycle of monsoon precipitation. In winter months, WRF compares better in timeseries of daily precipitation to stations below than above 3-km elevation, likely due to inferior measurement of snow than rain by the stations, highlighting the need for reliable snowfall measurements at high elevations in winter. In summer months, the nocturnal precipitation cycle in the foothills and valleys of the Himalaya is captured by this 6.7-km WRF simulation, while coarser simulations with convective parameterization show near zero nocturnal precipitation. In winter months, higher resolution is less important, serving only to slightly increase precipitation magnitudes due to steeper slopes. However, even in the 6.7-km simulation, afternoon precipitation is overestimated at high elevations, which can be reduced by even higher-resolution (2.2-km) simulations. These results indicate that WRF provides skillful simulations of precipitation relevant for studies of water resources over the complex terrain in the Himalaya. KW - WRF KW - Himalayas KW - Mesoscale KW - Precipitation KW - Climate change KW - Orographicprecipitation KW - Water resources Y1 - 2017 U6 - https://doi.org/10.1007/s00382-016-3414-y SN - 0930-7575 SN - 1432-0894 VL - 49 SP - 2179 EP - 2204 PB - Springer CY - New York ER -