TY - JOUR A1 - Gerhard, Reimund A1 - Kacprzyk, Ryszard T1 - Paul Böning - early electret researcher in Shanghai and Wroclaw (1922-1945) JF - IEEE transactions on dielectrics and electrical insulation N2 - The scientific career and the research activities of Paul Boening, especially during his tenures at Tongji University in Shanghai (Woosung Campus, 1922-1936) and the Technical University of Wroclaw (TH Breslau, 1936-1945), are briefly reviewed. In particular, Boening's pioneering investigations in the area of electrets and space charge in dielectrics are emphasized. We attempt to shed some light on the significant achievements of a virtually unknown contributor to the early history of electrets and of space-charge research and high-voltage engineering, during the 1920s and 1930s. It should be noted that dielectrics research was a truly international endeavor already at that time. KW - dielectrics KW - electrets KW - electrostatic KW - experiments KW - (high-)voltage measurements KW - space charge Y1 - 2022 U6 - https://doi.org/10.1109/TDEI.2022.3168372 SN - 1070-9878 SN - 1558-4135 VL - 29 IS - 3 SP - 853 EP - 858 PB - Institute of Electrical and Electronics Engineers CY - New York, NY ER - TY - JOUR A1 - Raman Venkatesan, Thulasinath A1 - Smykalla, David A1 - Ploss, Bernd A1 - Wübbenhorst, Michael A1 - Gerhard, Reimund T1 - Tuning the relaxor-ferroelectric properties of Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) Terpolymer films by means of thermally induced micro- and nanostructures JF - Macromolecules : a publication of the American Chemical Society N2 - The effects of thermal processing on the micro- and nanostructural features and thus also on the relaxor-ferroelectric properties of a P(VDF-TrFE-CFE) terpolymer were investigated in detail by means of dielectric experiments, such as dielectric relaxation spectroscopy (DRS), dielectric hysteresis loops, and thermally stimulated depolarization currents (TSDCs). The results were correlated with those obtained from differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and Fourier-transform infrared spectroscopy (FTIR). The results from DRS and DSC show that annealing reduces the Curie transition temperature of the terpolymer, whereas the results from WAXD scans and FTIR spectra help to understand the shift in the Curie transition temperatures as a result of reducing the ferroelectric phase fraction, which by default exists even in terpolymers with relatively high CFE contents. In addition, the TSDC traces reveal that annealing has a similar effect on the midtemperature transition by altering the fraction of constrained amorphous phase at the interphase between the crystalline and the amorphous regions. Changes in the transition temperatures are in turn related to the behavior of the hysteresis curves on differently heat-treated samples. During heating, evolution of the hysteresis curves from ferroelectric to relaxor-ferroelectric, first exhibiting single hysteresis loops and then double hysteresis loops near the Curie transition of the sample, is observed. When comparing the dielectric-hysteresis loops obtained at various temperatures, we find that annealed terpolymer films show higher electric-displacement values and lower coercive fields than the nonannealed sample, irrespective of the measurement temperature, and also exhibit ideal relaxor- ferroelectric behavior at ambient temperatures, which makes them excellent candidates for applications at or near room temperature. By tailoring the annealing conditions, it has been shown that the application temperature could be increased by fine tuning the induced micro- and nanostructures. KW - Annealing (metallurgy) KW - Hysteresis KW - Insulators KW - Phase transitions KW - Polarization Y1 - 2022 U6 - https://doi.org/10.1021/acs.macromol.2c00302 SN - 0024-9297 SN - 1520-5835 VL - 55 IS - 13 SP - 5621 EP - 5635 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Raman Venkatesan, Thulasinath A1 - Wübbenhorst, Michael A1 - Gerhard, Reimund T1 - Structure-property relationships in three-phase relaxor-ferroelectric terpolymers JF - Ferroelectrics N2 - Poly(vinylidenefluoride-trifluoroethylene)-based (P(VDF-TrFE)-based) terpolymers represent a new class of electroactive polymer materials that are relaxor-ferroelectric (RF) polymers and that offer unique and attractive property combinations in comparison with conventional ferroelectric polymers. The RF state is achieved by introducing a fluorine-containing termonomer as a "defect" into the ferroelectric P(VDF-TrFE) copolymer, which reduces the interaction between the VDF/TrFE dipoles. The resulting terpolymer exhibits a low Curie transition temperature and small remanent and coercive fields yielding a slim hysteresis loop that is typical for RF materials. Though the macroscopic behavior is similar to RF ceramics, the mechanisms of relaxor ferroelectricity in semi-crystalline polymers are different and not fully understood yet. Structure-property relationships play an important role in RF terpolymers, as they govern the final RF properties. Hence, a review of important characteristics, previous studies and relevant developments of P(VDF-TrFE)-based terfluoropolymers with either chlorofluoroethylene (CFE) or chlorotrifluoroethylene (CTFE) as the termonomer is deemed useful. The role of the termonomer and of its composition, as well as the effects of the processing conditions on the semi-crystalline structure which in turn affects the final RF properties are discussed in detail. In addition, the presence of noteworthy transition(s) in the mid-temperature range and the influence of preparation conditions on those transitions are reviewed. A better understanding of the fundamental aspects affecting the semi-crystalline structures will help to elucidate the nature of RF activity in VDF-based terpolymers and also help to further improve their applications-relevant electroactive properties. KW - Relaxor-ferroelectric (RF) fluoropolymers KW - structure-property KW - relationships KW - Curie transition KW - dielectric hysteresis KW - thermal KW - processing KW - mid-temperature transition(s) Y1 - 2022 U6 - https://doi.org/10.1080/00150193.2021.2014260 SN - 0015-0193 SN - 1563-5112 VL - 586 IS - 1 SP - 60 EP - 81 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - He, Yushuang A1 - Wang, Feipeng A1 - He, Li A1 - Wang, Qiang A1 - Li, Jian A1 - Qian, Yihua A1 - Gerhard, Reimund A1 - Plath, Ronald T1 - An insight Into the role of Nano-Alumina on DC Flashover-Resistance and surface charge variation of Epoxy Nanocomposites JF - IEEE transactions on dielectrics and electrical insulation N2 - The addition of nano-Al2O3 has been shown to enhance the breakdown voltage of epoxy resin, but its flashover results appeared with disputation. This work concentrates on the surface charge variation and dc flashover performance of epoxy resin with nano-Al2O3 doping. The dispersion of nano-Al2O3 in epoxy is characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The dc flashover voltages of samples under either positive or negative polarity are measured with a finger-electrode system, and the surface charge variations before and after flashovers were identified from the surface potential mapping. The results evidence that nano-Al2O3 would lead to a 16.9% voltage drop for the negative flashovers and a 6.8% drop for positive cases. It is found that one-time flashover clears most of the accumulated surface charges, regardless of positive or negative. As a result, the ground electrode is neighbored by an equipotential zone enclosed with low-density heterocharges. The equipotential zone tends to be broadened after 20 flashovers. The nano-Al2O3 is noticed as beneficial to downsize the equipotential zone due to its capability on charge migration, which is reasonable to maintain flashover voltage at a high level after multiple flashovers. Hence, nano-Al2O3 plays a significant role in improving epoxy with high resistance to multiple flashovers. KW - surface morphology KW - Epoxy resins KW - Electric potential KW - Surface treatment KW - Doping KW - Epoxy resin KW - multiple KW - flashover KW - nanocomposite KW - surface charge Y1 - 2022 U6 - https://doi.org/10.1109/TDEI.2022.3173510 SN - 1070-9878 SN - 1558-4135 VL - 29 IS - 3 SP - 1022 EP - 1029 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Wang, Feipeng A1 - Zhang, Zheng A1 - Yan, Yuyang A1 - Shen, Zijia A1 - Wang, Qiang A1 - Gerhard, Reimund T1 - Surface reconstruction on electro-spun PVA/PVP nanofibers by water evaporation JF - Nanomaterials N2 - Tailoring the secondary surface morphology of electro-spun nanofibers has been highly desired, as such delicate structures equip nanofibers with distinct functions. Here, we report a simple strategy to directly reconstruct the surface of polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) nanofibers by water evaporation. The roughness and diameter of the nanofibers depend on the temperature during vacuum drying. Surface changes of the nanofibers from smooth to rough were observed at 55 degrees C, with a significant drop in nanofiber diameter. We attribute the formation of the secondary surface morphology to the intermolecular forces in the water vapor, including capillary and the compression forces, on the basis of the results from the Fourier-transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopy. The strategy is universally effective for various electro-spun polymer nanofibers, thus opening up avenues toward more detailed and sophisticated structure design and implementation for nanofibers. KW - surface reconstruction KW - intermolecular force KW - surface-roughened KW - nanofiber Y1 - 2022 U6 - https://doi.org/10.3390/nano12050797 SN - 2079-4991 VL - 12 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Raman Venkatesan, Thulasinath A1 - Smykalla, David A1 - Ploss, Bernd A1 - Wübbenhorst, Michael A1 - Gerhard, Reimund T1 - Non-linear dielectric spectroscopy for detecting and evaluating structure-property relations in a P(VDF-TrFE-CFE) relaxor-ferroelectric terpolymer JF - Applied physics : A, Materials science & processing N2 - Non-linear dielectric spectroscopy (NLDS) is employed as an effective tool to study relaxation processes and phase transitions of a poly(vinylidenefluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) relaxor-ferroelectric (R-F) terpolymer in detail. Measurements of the non-linear dielectric permittivity epsilon 2 ' reveal peaks at 30 and 80 degrees C that cannot be identified in conventional dielectric spectroscopy. By combining the results from NLDS experiments with those from other techniques such as thermally stimulated depolarization and dielectric-hysteresis studies, it is possible to explain the processes behind the additional peaks. The former peak, which is associated with the mid-temperature transition, is found in all other vinylidene fluoride-based polymers and may help to understand the non-zero epsilon 2 ' values that are detected on the paraelectric phase of the terpolymer. The latter peak can also be observed during cooling of P(VDF-TrFE) copolymer samples at 100 degrees C and is due to conduction and space-charge polarization as a result of the accumulation of real charges at the electrode-sample interface. KW - Non-linear dielectric spectroscopy KW - P(VDF-TrFE-CFE) KW - Relaxor-ferroelectric polymer KW - Dielectric hysteresis KW - Curie-transition KW - Mid-temperature transition Y1 - 2021 U6 - https://doi.org/10.1007/s00339-021-04876-0 SN - 0947-8396 SN - 1432-0630 VL - 127 IS - 10 PB - Springer CY - Berlin ; Heidelberg ; New York ER - TY - JOUR A1 - Gerhard, Reimund T1 - 50 years of International Symposia on Electrets from 1967 to 2017 BT - a global history JF - IEEE electrical insulation magazine / Institute of Electrical and Electronics Engineers N2 - The prehistory of electrets is not known yet, but it is quite likely that the electrostatic charging behavior of amber (Greek: τò ηλεκτρoν, i.e., “electron”) already was familiar to people in ancient cultures (China, Egypt, Greece, etc.), before the Greek philosopher and scientist Thales of Miletus (6th century BCE)-or rather his disciples and followers-reported it in writing (cf. Figure 1). More than two millennia later, William Gilbert (1544–1603), the physician of Queen Elizabeth I, coined the term “electric” in his book De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure (1600) for dielectric materials that attract like amber and that included sulfur and glass [1]. The second half of the 18th century saw the invention of the electrophorus or electrophore [2], a capacitive electret device, in 1762 by Johan Carl Wilcke (1732–1796). Y1 - 2021 U6 - https://doi.org/10.1109/MEI.2021.9352710 SN - 0883-7554 SN - 1558-4402 VL - 37 IS - 2 SP - 50 EP - 55 PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Wang, Jingwen A1 - Rychkov, Dmitry A1 - Gerhard, Reimund T1 - Space-charge electret properties of polypropylene films with transcrystalline or spherulitic structures BT - a comparison of functionalities at interfaces JF - Journal of applied physics : AIP's archival journal for significant new results in applied physics / publ. by the American Institute of Physics N2 - Spherulite-related space-charge electret properties of polypropylene (PP) have been widely discussed in the past decades. In the present paper, a less-common crystalline structure in PP-transcrystalline PP-is studied regarding its electret behavior in comparison with the typical spherulitic morphology. Polarized light microscopy and differential scanning calorimetry were employed to characterize the crystallite types and crystallinities of transcrystalline and spherulitic PP. Their electret functionality is investigated by means of thermally stimulated discharge experiments, where the cross-over phenomenon is observed on transcrystalline PP films, whereas surface-potential saturation and undercharging on the surface occur on the spherulitic samples. Besides, an asymmetrical behavior of positive and negative surface-charge stabilities is found on PP with spherulites, the negatively charged spherulitic surfaces show a better charge stability. It is shown that PP electrets are very sensitive to changes in the microscopic crystalline structures and their interfaces as well as in the molecular conformations controlled through adjustments of the respective processing steps. In addition, surface and bulk nanocomposites of PP or low-density polyethylene with inorganic particles are included in the comparison. In view of recent developments in the areas of PP-based electret-fiber filters and cellular-foam ferroelectrets, the observed changes in the charge-storage properties may have particular relevance, as the required film, fiber, or foam processing might significantly modify crystalline morphologies and nano-scale interfaces in PP electrets. Limitations in the charge-storage capabilities of interface structures may also be of interest in the context of high-voltage electrical-insulation materials where reduced space-charge accumulation and slightly increased charge transport can be advantageous. Y1 - 2021 U6 - https://doi.org/10.1063/5.0039867 SN - 0021-8979 SN - 1089-7550 VL - 129 IS - 6 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Wang, Ningzhen A1 - Daniels, Robert A1 - Connelly, Liam A1 - Sotzing, Michael A1 - Wu, Chao A1 - Gerhard, Reimund A1 - Sotzing, Gregory A. A1 - Cao, Yang T1 - All-organic flexible ferroelectret nanogenerator with fabric-based electrodes for self-powered body area networks JF - Small : nano micro N2 - Due to their electrically polarized air-filled internal pores, optimized ferroelectrets exhibit a remarkable piezoelectric response, making them suitable for energy harvesting. Expanded polytetrafluoroethylene (ePTFE) ferroelectret films are laminated with two fluorinated-ethylene-propylene (FEP) copolymer films and internally polarized by corona discharge. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)-coated spandex fabric is employed for the electrodes to assemble an all-organic ferroelectret nanogenerator (FENG). The outer electret-plus-electrode double layers form active device layers with deformable electric dipoles that strongly contribute to the overall piezoelectric response in the proposed concept of wearable nanogenerators. Thus, the FENG with spandex electrodes generates a short-circuit current which is twice as high as that with aluminum electrodes. The stacking sequence spandex/FEP/ePTFE/FEP/ePTFE/FEP/spandex with an average pore size of 3 mu m in the ePTFE films yields the best overall performance, which is also demonstrated by the displacement-versus-electric-field loop results. The all-organic FENGs are stable up to 90 degrees C and still perform well 9 months after being polarized. An optimized FENG makes three light emitting diodes (LEDs) blink twice with the energy generated during a single footstep. The new all-organic FENG can thus continuously power wearable electronic devices and is easily integrated, for example, with clothing, other textiles, or shoe insoles. KW - all-organic ferroelectret nanogenerator (FENG) KW - all-organic KW - piezoelectric nanogenerator (PENG) KW - expanded polytetrafluoroethylene KW - ferroelectret KW - micro-energy harvesting KW - (PEDOT KW - PSS)-coated porous KW - fabric electrodes KW - wearable electronics Y1 - 2021 U6 - https://doi.org/10.1002/smll.202103161 SN - 1613-6810 SN - 1613-6829 VL - 17 IS - 33 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Stubning, Tobias A1 - Denes, Istvan A1 - Gerhard, Reimund T1 - Tuning electro-mechanical properties of EAP-based haptic actuators by adjusting layer thickness and number of stacked layers BT - a comparison JF - Engineering research express N2 - In our fast-changing world, human-machine interfaces (HMIs) are of ever-increasing importance. Among the most ubiquitous examples are touchscreens that most people are familiar with from their smartphones. The quality of such an HMI can be improved by adding haptic feedback-an imitation of using mechanical buttons-to the touchscreen. Thin-film actuators on the basis of electro-mechanically active polymers (EAPs), with the electroactive material sandwiched between two compliant electrodes, offer a promising technology for haptic surfaces. In thin-film technology, the thickness and the number of stacked layers of the electroactive dielectric are key parameters for tuning a system. Therefore, we have experimentally investigated the influence of the thickness of a single EAP layer on the electrical and the electro-mechanical performance of the transducer. In order to achieve high electro-mechanical actuator outputs, we have employed relaxor-ferroelectric ter-fluoropolymers that can be screen-printed. By means of a model-based approach, we have also directly compared single- and multi-layer actuators, thus providing guidelines for optimized transducer configurations with respect to the system requirements of haptic applications for which the operation frequency is of particular importance. KW - haptic feedback KW - vinylidenefluoride(VDF)-based polymers KW - screen-printed KW - systems KW - thin-film actuators KW - multi-layer systems KW - equivalent-circuit KW - modelling KW - electro-mechanically active polymers Y1 - 2021 U6 - https://doi.org/10.1088/2631-8695/abd286 SN - 2631-8695 VL - 3 IS - 1 PB - Institute of Physics CY - London ER -