TY - THES A1 - Horn, Juliane T1 - A modelling framework for exploration of a multidimensional factor causing decline in honeybee health BT - towards a better understanding how forage availability in agricultural landscapes affects honeybee colony persistence Y1 - 2017 ER - TY - JOUR A1 - Ramezani Ziarani, Maryam A1 - Bookhagen, Bodo A1 - Schmidt, Torsten A1 - Wickert, Jens A1 - de la Torre, Alejandro A1 - Deng, Zhiguo A1 - Calori, Andrea T1 - A model for the relationship between rainfall, GNSS-derived integrated water vapour, and CAPE in the eastern central Andes JF - Remote Sensing N2 - Atmospheric water vapour content is a key variable that controls the development of deep convective storms and rainfall extremes over the central Andes. Direct measurements of water vapour are challenging; however, recent developments in microwave processing allow the use of phase delays from L-band radar to measure the water vapour content throughout the atmosphere: Global Navigation Satellite System (GNSS)-based integrated water vapour (IWV) monitoring shows promising results to measure vertically integrated water vapour at high temporal resolutions. Previous works also identified convective available potential energy (CAPE) as a key climatic variable for the formation of deep convective storms and rainfall in the central Andes. Our analysis relies on GNSS data from the Argentine Continuous Satellite Monitoring Network, Red Argentina de Monitoreo Satelital Continuo (RAMSAC) network from 1999 to 2013. CAPE is derived from version 2.0 of the ECMWF’s (European Centre for Medium-Range Weather Forecasts) Re-Analysis (ERA-interim) and rainfall from the TRMM (Tropical Rainfall Measuring Mission) product. In this study, we first analyse the rainfall characteristics of two GNSS-IWV stations by comparing their complementary cumulative distribution function (CCDF). Second, we separately derive the relation between rainfall vs. CAPE and GNSS-IWV. Based on our distribution fitting analysis, we observe an exponential relation of rainfall to GNSS-IWV. In contrast, we report a power-law relationship between the daily mean value of rainfall and CAPE at the GNSS-IWV station locations in the eastern central Andes that is close to the theoretical relationship based on parcel theory. Third, we generate a joint regression model through a multivariable regression analysis using CAPE and GNSS-IWV to explain the contribution of both variables in the presence of each other to extreme rainfall during the austral summer season. We found that rainfall can be characterised with a higher statistical significance for higher rainfall quantiles, e.g., the 0.9 quantile based on goodness-of-fit criterion for quantile regression. We observed different contributions of CAPE and GNSS-IWV to rainfall for each station for the 0.9 quantile. Fourth, we identify the temporal relation between extreme rainfall (the 90th, 95th, and 99th percentiles) and both GNSS-IWV and CAPE at 6 h time steps. We observed an increase before the rainfall event and at the time of peak rainfall—both for GNSS-integrated water vapour and CAPE. We show higher values of CAPE and GNSS-IWV for higher rainfall percentiles (99th and 95th percentiles) compared to the 90th percentile at a 6-h temporal scale. Based on our correlation analyses and the dynamics of the time series, we show that both GNSS-IWV and CAPE had comparable magnitudes, and we argue to consider both climatic variables when investigating their effect on rainfall extremes. KW - Global Navigation Satellite System (GNSS) KW - GNSS-integrated water vapour KW - convective available potential energy (CAPE) KW - extreme rainfall KW - TRMM Y1 - 2021 U6 - https://doi.org/10.3390/rs13183788 SN - 2072-4292 VL - 13 IS - 18 PB - MDPI CY - Basel ER - TY - GEN A1 - Ramezani Ziarani, Maryam A1 - Bookhagen, Bodo A1 - Schmidt, Torsten A1 - Wickert, Jens A1 - de la Torre, Alejandro A1 - Deng, Zhiguo A1 - Calori, Andrea T1 - A model for the relationship between rainfall, GNSS-derived integrated water vapour, and CAPE in the eastern central Andes T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Atmospheric water vapour content is a key variable that controls the development of deep convective storms and rainfall extremes over the central Andes. Direct measurements of water vapour are challenging; however, recent developments in microwave processing allow the use of phase delays from L-band radar to measure the water vapour content throughout the atmosphere: Global Navigation Satellite System (GNSS)-based integrated water vapour (IWV) monitoring shows promising results to measure vertically integrated water vapour at high temporal resolutions. Previous works also identified convective available potential energy (CAPE) as a key climatic variable for the formation of deep convective storms and rainfall in the central Andes. Our analysis relies on GNSS data from the Argentine Continuous Satellite Monitoring Network, Red Argentina de Monitoreo Satelital Continuo (RAMSAC) network from 1999 to 2013. CAPE is derived from version 2.0 of the ECMWF’s (European Centre for Medium-Range Weather Forecasts) Re-Analysis (ERA-interim) and rainfall from the TRMM (Tropical Rainfall Measuring Mission) product. In this study, we first analyse the rainfall characteristics of two GNSS-IWV stations by comparing their complementary cumulative distribution function (CCDF). Second, we separately derive the relation between rainfall vs. CAPE and GNSS-IWV. Based on our distribution fitting analysis, we observe an exponential relation of rainfall to GNSS-IWV. In contrast, we report a power-law relationship between the daily mean value of rainfall and CAPE at the GNSS-IWV station locations in the eastern central Andes that is close to the theoretical relationship based on parcel theory. Third, we generate a joint regression model through a multivariable regression analysis using CAPE and GNSS-IWV to explain the contribution of both variables in the presence of each other to extreme rainfall during the austral summer season. We found that rainfall can be characterised with a higher statistical significance for higher rainfall quantiles, e.g., the 0.9 quantile based on goodness-of-fit criterion for quantile regression. We observed different contributions of CAPE and GNSS-IWV to rainfall for each station for the 0.9 quantile. Fourth, we identify the temporal relation between extreme rainfall (the 90th, 95th, and 99th percentiles) and both GNSS-IWV and CAPE at 6 h time steps. We observed an increase before the rainfall event and at the time of peak rainfall—both for GNSS-integrated water vapour and CAPE. We show higher values of CAPE and GNSS-IWV for higher rainfall percentiles (99th and 95th percentiles) compared to the 90th percentile at a 6-h temporal scale. Based on our correlation analyses and the dynamics of the time series, we show that both GNSS-IWV and CAPE had comparable magnitudes, and we argue to consider both climatic variables when investigating their effect on rainfall extremes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1172 KW - Global Navigation Satellite System (GNSS) KW - GNSS-integrated water vapour KW - convective available potential energy (CAPE) KW - extreme rainfall KW - TRMM Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-523256 SN - 1866-8372 IS - 1172 ER - TY - JOUR A1 - Aramayo, Alejandro A1 - Guzman, Silvina A1 - Hongn, Fernando D. A1 - del Papa, Cecilia A1 - Montero-Lopez, Carolina A1 - Sudo, Masafumi T1 - A Middle Miocene (13.5-12 Ma) deformational event constrained by volcanism along the Puna-Eastern Cordillera border, NW Argentina JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - The features of Middle Miocene deposits in the Puna-Eastern Cordillera transition (Valles Calchaquies) indicate that Cenozoic deformation, sedimentation and volcanism follow a complex spatiotemporal relationship. The intense volcanic activity recorded in the eastern Puna border between 14 and 11.5 Ma coincides with the occurrence of one of the most important deformation events of the Neogene tectonic evolution in the region. Studies performed across the Puna-Eastern Cordillera transition show different relationships between volcanic deposits of ca. 13.5-12.1 Ma and the Oligocene-Miocene Angastaco Formation. In this paper we describe the ash-flow tuff deposits which are the first of this type found concordant in the sedimentary fill of Valles Calchaquies. Several analyses performed on these pyroclastic deposits allow a correlation to be made with the Alto de Las Lagunas Ignimbrite (ca. 13.5 Ma) of the Pucarilla-Cerro Tipillas Volcanic Complex located in the Puna. Outcrops of the ca. 13.5 Ma pyroclastic deposits are recognised within the Puna and the Valle Calchaqui. However, in the southern prolongation of the Valle de Hualfin (Tiopampa-Pucarilla depression) that separates the Puna from the Valle Calchaqui at these latitudes, these deposits are partially eroded and buried, and thus their occurrence is recorded only by abundant volcanic clasts included in conglomerates of the Angastaco Formation. The sedimentation of the Angastaco Formation was aborted at ca. 12 Ma in the Tiopampa-Pucarilla depression by the Pucarilla Ignimbrite, which unconformably covers the synorogenic units. On the contrary, in the Valle Calchaqui the sedimentation of the Angastaco Formation continued until the Late Miocene. The different relationships between the Miocene Angastaco Formation and the ignimbrites with ages of ca. 13.5 and ca. 12 Ma reveal that in this short period (-1.5 m.y.) a significant deformation event took place and resulted in marked palaeogeographic changes, as evidenced by stratigraphic-sedimentological and chronological records in the Angastaco Formation. (C) 2017 Elsevier B.V. All rights reserved. KW - Angastaco Formation KW - Miocene deformation KW - Alto de Las Lagunas Ignimbrite KW - Luingo caldera KW - Foreland Y1 - 2017 U6 - https://doi.org/10.1016/j.tecto.2017.02.018 SN - 0040-1951 SN - 1879-3266 VL - 703 SP - 9 EP - 22 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - de Araujo, Jose Carlos A1 - Bronstert, Axel T1 - A method to assess hydrological drought in semi-arid environments and its application to the Jaguaribe River basin, Brazil JF - Water International N2 - This manuscript proposes a method to assess hydrological drought in semi-arid environments under high impoundment rate and applies it to the semi-arid Jaguaribe River basin in Brazil. It analyzes droughts (1) in the largest reservoir systems; (2) in the Upper Basin, considering 4744 reservoirs, 800 wells and almost 18,000 cisterns; and (3) in reservoirs of different sizes during multiyear droughts. Results show that the water demand is constrained in the basin; hydrological and meteorological droughts are often out of phase; there is a negative correlation between storage level and drought severity; and the small systems cannot cope with long-term droughts. KW - Reservoirs KW - Brazil KW - multiyear drought KW - water management KW - impoundment rate KW - water demand Y1 - 2016 U6 - https://doi.org/10.1080/02508060.2015.1113077 SN - 0250-8060 SN - 1941-1707 VL - 41 SP - 213 EP - 230 PB - Wiley-Blackwell CY - Abingdon ER - TY - JOUR A1 - Walter, Marius J. A1 - Trauth, Martin H. T1 - A MATLAB based orientation analysis of Acheulean handaxe accumulations in Olorgesailie and Kariandusi, Kenya Rift JF - Journal of human evolution N2 - The Pleistocene archeological record in East Africa has revealed unusual accumulations of Acheulean handaxes at prehistoric sites. In particular, there has been intensive debate concerning whether the artifact accumulation at the Middle Pleistocene Olorgesailie (Southern Kenya Rift) and Kariandusi (Central Kenya Rift) sites were a result of fluvial reworking or of in situ deposition by hominids. We used a two-step approach to test the hypothesis of fluvial reworking. Firstly, the behavior of handaxes in water currents was investigated in a current flume and the flow threshold required to reorientate the handaxes was determined. The results of these experiments suggested that, in relatively high energy and non-steady flow conditions, handaxes will reorientate themselves perpendicular to the current direction. Secondly, an automated image analysis routine was developed and applied to archeological plans from three Acheulean sites, two at Olorgesailie and one at Kariandusi, in order to determine the orientations of the handaxes. A Rayleigh test was then applied to the orientation data to test for a preferred orientation. The results revealed that the handaxes at the Upper Kariandusi Site and the Olorgesailie Main Site Mid Trench had a preferential orientation, suggesting reworking by a paleocurrent. The handaxes from the Olorgesailie Main Site H/6A, however, appeared to be randomly oriented and in situ deposition by the producers therefore remains a possibility. KW - Excavation plan KW - Artifact KW - Flume channel KW - Shape detection KW - Rayleigh test Y1 - 2013 U6 - https://doi.org/10.1016/j.jhevol.2013.02.011 SN - 0047-2484 VL - 64 IS - 6 SP - 569 EP - 581 PB - Elsevier CY - London ER - TY - JOUR A1 - Riggelsen, Carsten A1 - Ohrnberger, Matthias T1 - A machine learning approach for improving the detection capabilities at 3C Seismic Stations JF - Pure and applied geophysics N2 - We apply and evaluate a recent machine learning method for the automatic classification of seismic waveforms. The method relies on Dynamic Bayesian Networks (DBN) and supervised learning to improve the detection capabilities at 3C seismic stations. A time-frequency decomposition provides the basis for the required signal characteristics we need in order to derive the features defining typical "signal" and "noise" patterns. Each pattern class is modeled by a DBN, specifying the interrelationships of the derived features in the time-frequency plane. Subsequently, the models are trained using previously labeled segments of seismic data. The DBN models can now be compared against in order to determine the likelihood of new incoming seismic waveform segments to be either signal or noise. As the noise characteristics of seismic stations varies smoothly in time (seasonal variation as well as anthropogenic influence), we accommodate in our approach for a continuous adaptation of the DBN model that is associated with the noise class. Given the difficulty for obtaining a golden standard for real data (ground truth) the proof of concept and evaluation is shown by conducting experiments based on 3C seismic data from the International Monitoring Stations, BOSA and LPAZ. Y1 - 2014 U6 - https://doi.org/10.1007/s00024-012-0592-3 SN - 0033-4553 SN - 1420-9136 VL - 171 IS - 3-5 SP - 395 EP - 411 PB - Springer CY - Basel ER - TY - JOUR A1 - Scheffler, Franziska A1 - Immenhauser, Adrian A1 - Pourteau, Amaury A1 - Natalicchio, Marcello A1 - Candan, Osman A1 - Oberhänsli, Roland T1 - A lost Tethyan evaporitic basin BT - Evidence from a Cretaceous hemipelagic meta-selenite - red chert association in the Eastern Mediterranean realm JF - Sedimentology : the journal of the International Association of Sedimentologists N2 - Ancient evaporite deposits are geological archives of depositional environments characterized by a long‐term negative precipitation balance and bear evidence for global ocean element mass balance calculations. Here, Cretaceous selenite pseudomorphs from western Anatolia (‘Rosetta Marble’) — characterized by their exceptional morphological preservation — and their ‘marine’ geochemical signatures are described and interpreted in a process‐oriented context. These rocks recorded Late Cretaceous high‐pressure/low‐temperature, subduction‐related metamorphism with peak conditions of 1·0 to 1·2 GPa and 300 to 400°C. Metre‐scale, rock‐forming radiating rods, now present as fibrous calcite marble, clearly point to selenitic gypsum as the precursor mineral. Stratigraphic successions are recorded along a reconstructed proximal to distal transect. The cyclical alternation of selenite beds and radiolarian ribbon‐bedded cherts in the distal portions are interpreted as a two type of seawater system. During arid intervals, shallow marine brines cascaded downward into basinal settings and induced precipitation. During more humid times, upwelling‐induced radiolarian blooms caused the deposition of radiolarite facies. Interestingly, there is no comparable depositional setting known from the Cenozoic world. Meta‐selenite geochemical data (δ13C, δ18O and 87Sr/86Sr) plot within the range of reconstructed middle Cretaceous seawater signatures. Possible sources for the 13C‐enriched (mean 2·2‰) values include methanogenesis, gas hydrates and cold seep fluid exhalation. Spatially resolved component‐specific analysis of a rock slab displays isotopic variances between meta‐selenite crystals (mean δ13C 2·2‰) and host matrix (mean δ13C 1·3‰). The Cretaceous evaporite‐pseudomorphs of Anatolia represent a basin wide event coeval with the Aptian evaporites of the Proto‐Atlantic and the pseudomorphs share many attributes, including lateral distribution of 600 km and stratigraphic thickness of 1·5 to 2·0 km, with the evaporites formed during the younger Messinian salinity crisis. The Rosetta Marble of Anatolia may represent the best‐preserved selenite pseudomorphs worldwide and have a clear potential to act as a template for the study of meta‐selenite in deep time. KW - Blueschist metamorphism KW - depositional environment KW - evaporites KW - Neotethys KW - pseudomorphism KW - sedimentology Y1 - 2019 U6 - https://doi.org/10.1111/sed.12606 SN - 0037-0746 SN - 1365-3091 VL - 66 IS - 7 SP - 2627 EP - 2660 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - von Specht, Sebastian A1 - Cotton, Fabrice T1 - A link between machine learning and optimization in ground-motion model development BT - weighted mixed-effects regression with data-driven probabilistic earthquake classification JF - Bulletin of the Seismological Society of America N2 - The steady increase of ground-motion data not only allows new possibilities but also comes with new challenges in the development of ground-motion models (GMMs). Data classification techniques (e.g., cluster analysis) do not only produce deterministic classifications but also probabilistic classifications (e.g., probabilities for each datum to belong to a given class or cluster). One challenge is the integration of such continuous classification in regressions for GMM development such as the widely used mixed-effects model. We address this issue by introducing an extension of the mixed-effects model to incorporate data weighting. The parameter estimation of the mixed-effects model, that is, fixed-effects coefficients of the GMMs and the random-effects variances, are based on the weighted likelihood function, which also provides analytic uncertainty estimates. The data weighting permits for earthquake classification beyond the classical, expert-driven, binary classification based, for example, on event depth, distance to trench, style of faulting, and fault dip angle. We apply Angular Classification with Expectation-maximization, an algorithm to identify clusters of nodal planes from focal mechanisms to differentiate between, for example, interface- and intraslab-type events. Classification is continuous, that is, no event belongs completely to one class, which is taken into account in the ground-motion modeling. The theoretical framework described in this article allows for a fully automatic calibration of ground-motion models using large databases with automated classification and processing of earthquake and ground-motion data. As an example, we developed a GMM on the basis of the GMM by Montalva et al. (2017) with data from the strong-motion flat file of Bastias and Montalva (2016) with similar to 2400 records from 319 events in the Chilean subduction zone. Our GMM with the data-driven classification is comparable to the expert-classification-based model. Furthermore, the model shows temporal variations of the between-event residuals before and after large earthquakes in the region. Y1 - 2020 U6 - https://doi.org/10.1785/0120190133 SN - 0037-1106 SN - 1943-3573 VL - 110 IS - 6 SP - 2777 EP - 2800 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Kneis, David T1 - A lightweight framework for rapid development of object-based hydrological model engines JF - Environmental modelling & software with environment data news N2 - Computer-based simulation models are frequently used in hydrological research and engineering but also in other fields of environmental sciences. New case studies often require existing model concepts to be adapted. Extensions may be necessary due to the peculiarities of the studied natural system or subtleties of anthropogenic control. In other cases, simplifications must be made in response to scarce data, incomplete knowledge, or restrictions set by the spatio-temporal scale of application. This paper introduces an open-source modeling framework called ECHSE designed to cope with the above-mentioned challenges. It provides a lightweight infrastructure for the rapid development of new, reusable simulation tools and, more importantly, the safe modification of existing formulations. ECHSE-based models treat the simulated system as a collection of interacting objects. Although feedbacks are generally supported, the majority of the objects' interactions is expected to be of the feed-forward type. Therefore, the ECHSE software is particularly useful in the context of hydrological catchment modeling. Conversely, it is unsuitable, e.g., for fully hydrodynamic simulations and groundwater flow modeling. The focus of the paper is put on a comprehensible outline of the ECHSE's fundamental concepts and limitations. For the purpose of illustration, a specific, ECHSE-based solution for hydrological catchment modeling is presented which has undergone testing in a number of river basins. (C) 2015 Elsevier Ltd. All rights reserved. KW - Modeling framework KW - Genetic model KW - Hydrology KW - ECHSE Y1 - 2015 U6 - https://doi.org/10.1016/j.envsoft.2015.02.009 SN - 1364-8152 SN - 1873-6726 VL - 68 SP - 110 EP - 121 PB - Elsevier CY - Oxford ER -