TY - GEN A1 - Brune, Sascha T1 - Forces within continental and oceanic rifts BT - numerical modeling elucidates the impact of asthenospheric flow on surface stress T2 - Geology Y1 - 2018 U6 - https://doi.org/10.1130/focus022018.1 SN - 0091-7613 SN - 1943-2682 VL - 46 IS - 2 SP - 191 EP - 192 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Nennewitz, Markus A1 - Thiede, Rasmus C. A1 - Bookhagen, Bodo T1 - Fault activity, tectonic segmentation, and deformation pattern of the western Himalaya on Ma timescales inferred from landscape morphology JF - Lithosphere N2 - The location and magnitude of Himalayan tectonic activity has been debated for decades, and several aspects remain unknown. For instance, the spatial distribution of crustal shortening that ultimately sustains Himalayan topography and the activity of major fault zones remain unknown at Ma timescales. In this study, we address the spatial deformation pattern in the data-scarce western Himalaya. We calculated catchment averaged, normalized river-steepness indices of non-glaciated drainage basins with tributary catchment areas between 5 and 200 km(2) (n = 2138). We analyzed the spatial distribution of the relative change of river steepness both along and across strike to gain information about the regional distribution of differential uplift pattern and relate this to the activity of distinctive fault segments. For our study area, we observe a positive correlation of averaged k(sn) values with long-term exhumation rates derived from previously published thermochronologic datasets combined with thermal modeling as well as with millennial timescale denudation rates based on cosmogenic nuclide dating. Our results indicate three tectono-geomorphic segments with distinctive landscape morphology, structural architecture, and fault geometry along the western Himalaya: Garhwal-Sutlej, Chamba, and Kashmir Himalaya (from east to west). Moreover, our data recognize distinctive fault segments showing varying thrust activity along strike of the Main Frontal Thrust, the Main Boundary Thrust, and in the vicinity of the steep topographic transition between the Lesser and Greater Himalaya. In this region, we relate out-of-sequence deformation along major basement thrust ramps, such as the Munsiari Thrust with deformation along a mid-crustal ramp along the basal decollement. We suggest that during the Quaternary, all major fault zones in the Western Himalaya experienced out-of-sequence faulting and have accommodated some portion of crustal shortening. Y1 - 2018 U6 - https://doi.org/10.1130/L681.1 SN - 1941-8264 SN - 1947-4253 VL - 10 IS - 5 SP - 632 EP - 640 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Braun, Jean A1 - Gemignani, Lorenzo A1 - van der Beek, Pieter A. T1 - Extracting information on the spatial variability in erosion rate stored in detrital cooling age distributions in river sands JF - Earth surface dynamics N2 - One of the main purposes of detrital thermochronology is to provide constraints on the regional-scale exhumation rate and its spatial variability in actively eroding mountain ranges. Procedures that use cooling age distributions coupled with hypsometry and thermal models have been developed in order to extract quantitative estimates of erosion rate and its spatial distribution, assuming steady state between tectonic uplift and erosion. This hypothesis precludes the use of these procedures to assess the likely transient response of mountain belts to changes in tectonic or climatic forcing. Other methods are based on an a priori knowledge of the in situ distribution of ages to interpret the detrital age distributions. In this paper, we describe a simple method that, using the observed detrital mineral age distributions collected along a river, allows us to extract information about the relative distribution of erosion rates in an eroding catchment without relying on a steady-state assumption, the value of thermal parameters or an a priori knowledge of in situ age distributions. The model is based on a relatively low number of parameters describing lithological variability among the various sub-catchments and their sizes and only uses the raw ages. The method we propose is tested against synthetic age distributions to demonstrate its accuracy and the optimum conditions for it use. In order to illustrate the method, we invert age distributions collected along the main trunk of the Tsangpo-Siang-Brahmaputra river system in the eastern Himalaya. From the inversion of the cooling age distributions we predict present-day erosion rates of the catchments along the Tsangpo-Siang-Brahmaputra river system, as well as some of its tributaries. We show that detrital age distributions contain dual information about present-day erosion rate, i. e., from the predicted distribution of surface ages within each catchment and from the relative contribution of any given catchment to the river distribution. The method additionally allows comparing modern erosion rates to long-term exhumation rates. We provide a simple implementation of the method in Python code within a Jupyter Notebook that includes the data used in this paper for illustration purposes. Y1 - 2018 U6 - https://doi.org/10.5194/esurf-6-257-2018 SN - 2196-6311 SN - 2196-632X VL - 6 IS - 1 SP - 257 EP - 270 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Wendi, Dadiyorto A1 - Marwan, Norbert T1 - Extended recurrence plot and quantification for noisy continuous dynamical systems JF - Chaos : an interdisciplinary journal of nonlinear science N2 - One main challenge in constructing a reliable recurrence plot (RP) and, hence, its quantification [recurrence quantification analysis (RQA)] of a continuous dynamical system is the induced noise that is commonly found in observation time series. This induced noise is known to cause disrupted and deviated diagonal lines despite the known deterministic features and, hence, biases the diagonal line based RQA measures and can lead to misleading conclusions. Although discontinuous lines can be further connected by increasing the recurrence threshold, such an approach triggers thick lines in the plot. However, thick lines also influence the RQA measures by artificially increasing the number of diagonals and the length of vertical lines [e.g., Determinism (DET) and Laminarity (LAM) become artificially higher]. To take on this challenge, an extended RQA approach for accounting disrupted and deviated diagonal lines is proposed. The approach uses the concept of a sliding diagonal window with minimal window size that tolerates the mentioned deviated lines and also considers a specified minimal lag between points as connected. This is meant to derive a similar determinism indicator for noisy signal where conventional RQA fails to capture. Additionally, an extended local minima approach to construct RP is also proposed to further reduce artificial block structures and vertical lines that potentially increase the associated RQA like LAM. The methodology and applicability of the extended local minima approach and DET equivalent measure are presented and discussed, respectively. Y1 - 2018 U6 - https://doi.org/10.1063/1.5025485 SN - 1054-1500 SN - 1089-7682 VL - 28 IS - 8 PB - American Institute of Physics CY - Melville ER - TY - THES A1 - Stettner, Samuel T1 - Exploring the seasonality of rapid Arctic changes from space T1 - Erkundung der Saisonalität schneller arktischer Veränderungen aus dem Weltraum BT - monitoring of permafrost disturbance, snow cover and vegetation in tundra environments with TerraSAR-X BT - Überwachung von Permafroststörungen, Schneebedeckung und Vegetation in Tundra-Umgebungen mit TerraSAR-X N2 - Arctic warming has implications for the functioning of terrestrial Arctic ecosystems, global climate and socioeconomic systems of northern communities. A research gap exists in high spatial resolution monitoring and understanding of the seasonality of permafrost degradation, spring snowmelt and vegetation phenology. This thesis explores the diversity and utility of dense TerraSAR-X (TSX) X-Band time series for monitoring ice-rich riverbank erosion, snowmelt, and phenology of Arctic vegetation at long-term study sites in the central Lena Delta, Russia and on Qikiqtaruk (Herschel Island), Canada. In the thesis the following three research questions are addressed: • Is TSX time series capable of monitoring the dynamics of rapid permafrost degradation in ice-rich permafrost on an intra-seasonal scale and can these datasets in combination with climate data identify the climatic drivers of permafrost degradation? • Can multi-pass and multi-polarized TSX time series adequately monitor seasonal snow cover and snowmelt in small Arctic catchments and how does it perform compared to optical satellite data and field-based measurements? • Do TSX time series reflect the phenology of Arctic vegetation and how does the recorded signal compare to in-situ greenness data from RGB time-lapse camera data and vegetation height from field surveys? To answer the research questions three years of TSX backscatter data from 2013 to 2015 for the Lena Delta study site and from 2015 to 2017 for the Qikiqtaruk study site were used in quantitative and qualitative analysis complimentary with optical satellite data and in-situ time-lapse imagery. The dynamics of intra-seasonal ice-rich riverbank erosion in the central Lena Delta, Russia were quantified using TSX backscatter data at 2.4 m spatial resolution in HH polarization and validated with 0.5 m spatial resolution optical satellite data and field-based time-lapse camera data. Cliff top lines were automatically extracted from TSX intensity images using threshold-based segmentation and vectorization and combined in a geoinformation system with manually digitized cliff top lines from the optical satellite data and rates of erosion extracted from time-lapse cameras. The results suggest that the cliff top eroded at a constant rate throughout the entire erosional season. Linear mixed models confirmed that erosion was coupled with air temperature and precipitation at an annual scale, seasonal fluctuations did not influence 22-day erosion rates. The results highlight the potential of HH polarized X-Band backscatter data for high temporal resolution monitoring of rapid permafrost degradation. The distinct signature of wet snow in backscatter intensity images of TSX data was exploited to generate wet snow cover extent (SCE) maps on Qikiqtaruk at high temporal resolution. TSX SCE showed high similarity to Landsat 8-derived SCE when using cross-polarized VH data. Fractional snow cover (FSC) time series were extracted from TSX and optical SCE and compared to FSC estimations from in-situ time-lapse imagery. The TSX products showed strong agreement with the in-situ data and significantly improved the temporal resolution compared to the Landsat 8 time series. The final combined FSC time series revealed two topography-dependent snowmelt patterns that corresponded to in-situ measurements. Additionally TSX was able to detect snow patches longer in the season than Landsat 8, underlining the advantage of TSX for detection of old snow. The TSX-derived snow information provided valuable insights into snowmelt dynamics on Qikiqtaruk previously not available. The sensitivity of TSX to vegetation structure associated with phenological changes was explored on Qikiqtaruk. Backscatter and coherence time series were compared to greenness data extracted from in-situ digital time-lapse cameras and detailed vegetation parameters on 30 areas of interest. Supporting previous results, vegetation height corresponded to backscatter intensity in co-polarized HH/VV at an incidence angle of 31°. The dry, tall shrub dominated ecological class showed increasing backscatter with increasing greenness when using the cross polarized VH/HH channel at 32° incidence angle. This is likely driven by volume scattering of emerging and expanding leaves. Ecological classes with more prostrate vegetation and higher bare ground contributions showed decreasing backscatter trends over the growing season in the co-polarized VV/HH channels likely a result of surface drying instead of a vegetation structure signal. The results from shrub dominated areas are promising and provide a complementary data source for high temporal monitoring of vegetation phenology. Overall this thesis demonstrates that dense time series of TSX with optical remote sensing and in-situ time-lapse data are complementary and can be used to monitor rapid and seasonal processes in Arctic landscapes at high spatial and temporal resolution. N2 - Die Erwärmung der Arktis hat Auswirkungen auf die Stabilität und Funktion terrestrischer arktischer Ökosysteme, auf das globale Klima, sowie auf sozioökonomische Systeme nördlicher Gemeinden. Es besteht eine Forschungslücke bei der Überwachung der Saisonalität von Permafrostdegradation, Schneebedeckung und Vegetationsphänologie. Diese Dissertation untersucht den Nutzen von TerraSAR-X (TSX) X-Band Daten für die Überwachung eisreicher Ufererosion, Schneeschmelze, sowie Phänologie arktischer Vegetation im zentralen Lena Delta in Russland und auf Qikiqtaruk (Herschel Island), Kanada. Die Dynamik intrasaisonaler eisreicher Ufererosion im zentralen Lena-Delta in Russland wurde mit TSX Rückstreuintensitätsbildern quantifiziert und mit optischen Satelliten-Daten und Feldmessungen validiert. Kliff Kanten wurden automatisch aus TSX-Intensitätsbildern extrahiert und in einem Geoinformationssystem mit manuell digitalisierten Kliff Kanten aus optischen Satellitendaten, sowie mit Erosionsraten aus Zeitrafferkameras zusammengeführt. Die Ergebnisse deuten darauf hin, dass sich die Kliff Kante während der gesamten Auftauzeit mit konstanter Geschwindigkeit zurückzog. Die Verwendung von linearen Mischmodellen bestätigte, dass die Erosion im jährlichen Maßstab mit der Lufttemperatur und dem Niederschlag gekoppelt war, saisonale Schwankungen beeinflussten die Erosionsrate nicht. Die Ergebnisse stützen die Verwendung von TSX zur Überwachung schneller Permafrostdegradation mit hoher zeitlicher Auflösung. Die eindeutige Signatur von nassem Schnee in TSX Rückstreuintensitätsbildern wurde genutzt, um Schneeverteilungskarten (SCE) auf Qikiqtaruk in hoher zeitlicher Auflösung zu erzeugen. Aus TSX abgeleitete SCE zeigten eine große Ähnlichkeit zu SCE aus Landsat 8 Daten. Zeitreihen von prozentualer Schneebedeckung (FSC) wurden aus TSX und optischen SCE extrahiert und mit FSC-Schätzungen aus in-situ Zeitrafferkamera Daten verglichen. Auch hier zeigte TSX eine starke Übereinstimmung mit den in-situ-Daten und verbesserte die zeitliche Auflösung im Vergleich zur Landsat 8 Zeitreihe erheblich. Aus einer finalen kombinierten FSC-Zeitreihe konnten zwei Muster von Schneeschmelzen in ausgewählten Einzugsgebieten abgeleitet werden, die sich mit den in-situ Messungen deckten. Zusätzlich konnte TSX später in der Saison Schnee länger erkennen als Landsat 8, was den Vorteil von TSX zur Erkennung von Altschnee unterstreicht. Die TSX-abgeleiteten Schnee-Informationen lieferten wertvolle Einblicke in die Schneeschmelz-Dynamik auf Qikiqtaruk, welche zuvor nicht verfügbar waren. Die Empfindlichkeit von TSX für Vegetationsstruktur, die mit phänologischen Veränderungen einhergeht, wurde auf Qikiqtaruk untersucht. Rückstreu- und Kohärenzzeitreihen wurden aus 30 Testgebieten extrahiert. Die Rückstreu- und Kohärenzsignale wurden mit Vitalitäts-Daten verglichen, die aus in-situ-Zeitrafferkamera Zeitreihen extrahiert wurden. Die Ergebnisse zeigten einen Zusammenhang zwischen Vegetationshöhe und der Rückstreuintensität in HH / VV polarisierten Daten bei einem Einfallswinkel von 31 °. Ferner zeigte die ökologische Klasse mit einer Kombination von hohen Sträuchern und trockenen Oberflächenbedingungen eine zunehmende Rückstreuung mit zunehmende Pflanzenvitalität, wenn der kreuzpolarisierte VH / HH-Kanal bei 32 ° Einfallswinkel verwendet wurde. Die Ergebnisse aus strauchdominierten Klassen sind vielversprechend und liefern eine ergänzende Datenquelle für zeitlich hochaufgelöste Beobachtung der Vegetationsphänologie. Insgesamt zeigt diese Arbeit, dass TSX X-Band-Daten schnelle und saisonale Prozesse in arktischen Landschaften mit hoher räumlicher und zeitlicher Auflösung überwachen können. KW - SAR KW - remote sensing KW - arctic KW - SAR KW - Fernerkundung KW - Arktis Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-425783 ER - TY - JOUR A1 - Puppe, Daniel A1 - Sommer, Michael T1 - Experiments, uptake mechanisms, and functioning of silicon foliar fertilization BT - a review focusing on Maize, Rice, and Wheat JF - Advances in Agronomy ; 152 N2 - Silicon (Si) is considered as a quasiessential element for higher plants as its uptake increases plant growth and resistance against abiotic as well as biotic stresses. Foliar application of fertilizers generally is assumed to be a comparably environment-friendly form of fertilization because only small quantities are needed. The interest in foliar fertilization and the use of Si as a fertilizer in general increased significantly within the last decades, but there are only few publications dealing with the foliar application of Si at all. In the present review, the effects of Si foliar fertilization, including nano-Si fertilizers, on the three most important crops on a global scale, that is, maize, rice, and wheat, are summarized. Additionally, different pathways (i.e., cuticular pathways, stomata, and trichomes) of foliar uptake and functioning of Si foliar fertilizers against biotic (i.e., fungal diseases and harmful insects), as well as abiotic (i.e., water stress, macronutrient imbalance, and heavy metal toxicity) stressors are discussed. Future research should especially focus on (1) the gathering of empirical data from field and greenhouse experiments, (2) the intensification of co-operations between practitioners and scientists, (3) interdisciplinary research, and (4) the analysis of results from multiple studies (meta-analysis, big data) to fully understand effects, uptake, and functioning of Si foliar fertilizers and to evaluate their potential in modern sustainable agriculture concepts. Y1 - 2018 SN - 978-0-12-815171-6 U6 - https://doi.org/10.1016/bs.agron.2018.07.003 SN - 0065-2113 VL - 152 SP - 1 EP - 49 PB - Elsevier CY - San Diego ER - TY - GEN A1 - Olatunji, Akinade S. A1 - Kolawole, Tesleem O. A1 - Oloruntola, Moroof A1 - Günter, Christina T1 - Evaluation of pollution of soils and particulate matter around metal recycling factories in Southwestern Nigeria T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background. Metal recycling factories (MRFs) have developed rapidly in Nigeria as recycling policies have been increasingly embraced. These MRFs are point sources for introducing potentially toxic elements (PTEs) into environmental media. Objectives. The aim of this study was to determine the constituents (elemental and mineralogy) of the wastes (slag and particulate matter, (PM)) and soils around the MRFs and to determine the level of pollution within the area. Methods. Sixty samples (30 slag samples, 15 soil samples and 15 PM samples) were collected for this study. The soils, slag and PM samples were analyzed for elemental constituents using inductively coupled plasma optical emission spectrometry. Mineralogy of the PM was determined using scanning electron microscope-energy dispersive spectroscopy (SEM-EDS), and soil mineralogy was determined by an X-ray diffractometer (XRD). Results. The results of the soil analyses revealed the following concentrations for the selected metals in mg/kg include lead (Pb) (21.0-2399.0), zinc (Zn) (56.0-4188.0), copper (Cu) (10.0-1470.0), nickel (Ni) (6.0-215.0), chromium (Cr) (921.0-1737.0) and cadmium (Cd) (below detectable limit (Bdl)-18.1). For the slags the results were Pb (68.0-.333.0), Zn (1364.0-3062), Cu (119.0-1470.0), Ni (12.0-675.0), Cr (297-1737) and Cd (Bdl-15.8). The results in µg/g for the metal analysis in PM were Pb (4.6-160.0), Zn (18.0-471.0), Cu (2.5-11.0), Ni (0.8-4.2), and Cr (2.5-11.0), while Cd was undetected. The slags are currently utilized for filling the foundations of buildings and roads, providing additional pathways for the introduction of PTEs into the environment from the suspended materials generated from mechanical breakdown of the slags. Conclusions. The MRFs were found to have impacted the quality of environmental media through the introduction of PTEs, impairing soil quality, in addition to PM, which can have detrimental health consequences. Further studies on the health implications of these pollutants and their impacts on human health are needed. Competing Interests. The authors declare no competing financial interests T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1074 KW - potentially toxic elements KW - metal recycling plants KW - slags KW - pollution indices Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-471560 SN - 1866-8372 IS - 1074 SP - 20 EP - 30 ER - TY - JOUR A1 - Tutu, Anthony Osei A1 - Sobolev, Stephan Vladimir A1 - Steinberger, Bernhard A1 - Popov, A. A. A1 - Rogozhina, Irina T1 - Evaluating the Influence of Plate Boundary Friction and Mantle Viscosity on Plate Velocities JF - Geochemistry, geophysics, geosystems N2 - Lithospheric plates move over the low-viscosity asthenosphere balancing several forces, which generate plate motions. We use a global 3-D lithosphere-asthenosphere model (SLIM3D) with visco-elasto-plastic rheology coupled to a spectral model of mantle flow at 300 km depth to quantify the influence of intra-plate friction and asthenospheric viscosity on plate velocities. We account for the brittle-ductile deformation at plate boundaries (yield stress) using a plate boundary friction coefficient to predict the present-day plate motion and net rotation of the lithospheric plates. Previous modeling studies have suggested that small friction coefficients (mu < 0.1, yield stress similar to 100 MPa) can lead to plate tectonics in models of mantle convection. Here we show that in order to match the observed present-day plate motion and net rotation, the frictional parameter must be less than 0.05. We obtain a good fit with the magnitude and orientation of the observed plate velocities (NUVEL-1A) in a no-net-rotation (NNR) reference frame with mu < 0.05 and a minimum asthenosphere viscosity of similar to 5 . 10(19) Pas to 10(20) Pas. Our estimates of net rotation (NR) of the lith-osphere suggest that amplitudes similar to 0.1-0.2 (degrees/Ma), similar to most observation-based estimates, can be obtained with asthenosphere viscosity cutoff values of similar to 10(19) Pas to 5 . 10(19) Pas and friction coefficients mu < 0.05. Y1 - 2018 U6 - https://doi.org/10.1002/2017GC007112 SN - 1525-2027 VL - 19 IS - 3 SP - 642 EP - 666 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Lawrence, Mark A1 - Schäfer, Stefan A1 - Muri, Helene A1 - Scott, Vivian A1 - Oschlies, Andreas A1 - Vaughan, Naomi E. A1 - Boucher, Olivier A1 - Schmidt, Hauke A1 - Haywood, Jim A1 - Scheffran, Jürgen T1 - Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals JF - Nature Communications N2 - Current mitigation efforts and existing future commitments are inadequate to accomplish the Paris Agreement temperature goals. In light of this, research and debate are intensifying on the possibilities of additionally employing proposed climate geoengineering technologies, either through atmospheric carbon dioxide removal or farther-reaching interventions altering the Earth’s radiative energy budget. Although research indicates that several techniques may eventually have the physical potential to contribute to limiting climate change, all are in early stages of development, involve substantial uncertainties and risks, and raise ethical and governance dilemmas. Based on present knowledge, climate geoengineering techniques cannot be relied on to significantly contribute to meeting the Paris Agreement temperature goals. KW - Atmospheric chemistry KW - Atmospheric dynamics KW - Atmospheric science KW - Climate change KW - Environmental impact Y1 - 2018 U6 - https://doi.org/10.1038/s41467-018-05938-3 SN - 2041-1723 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Soares, Gabriel A1 - Yamazaki, Yosuke A1 - Matzka, Jürgen A1 - Pinheiro, Katia A1 - Morschhauser, Achim A1 - Stolle, Claudia A1 - Alken, Patrick T1 - Equatorial counter electrojet longitudinal and seasonal variablity in the American sector JF - Journal of geophysical research : Space physics N2 - The equatorial electrojet occasionally reverses during morning and afternoon hours, leading to periods of westward current in the ionospheric E region that are known as counter electrojet (CEJ) events. We present the first analysis of CEJ climatology and CEJ dependence on solar flux and lunar phase for the Brazilian sector, based on an extensive ground-based data set for the years 2008 to 2017 from the geomagnetic observatory Tatuoca (1.2 degrees S, 48.5 degrees W), and we compare it to the results found for Huancayo (12.0 degrees S, 75.3 degrees W) observatory in the Peruvian sector. We found a predominance of morning CEJ events for both sectors. The afternoon CEJ occurrence rate in the Brazilian sector is twice as high as in the Peruvian sector. The afternoon CEJ occurrence rate strongly depends on season, with maximum rates occurring during the northern-hemisphere summer for the Brazilian sector and during the northern-hemisphere winter for the Peruvian sector. Significant discrepancies between the two sectors are also found for morning CEJ rates during the northern-hemisphere summer. These longitudinal differences are in agreement with a CEJ climatology derived from contemporary Swarm satellite data and can be attributed in part to the well-known longitudinal wave-4 structure in the background equatorial electrojet strength that results from nonmigrating solar tides and stationary planetary waves. Simulations with the Thermosphere-Ionosphere-Electrodynamics General Circulation Model show that the remaining longitudinal variability in CEJ during northern summer can be explained by the effect of migrating tides in the presence of the varying geomagnetic field in the South Atlantic Anomaly. Y1 - 2018 U6 - https://doi.org/10.1029/2018JA025968 SN - 2169-9380 SN - 2169-9402 VL - 123 IS - 11 SP - 9906 EP - 9920 PB - American Geophysical Union CY - Washington ER -