TY - JOUR A1 - Menges, Johanna A1 - Hovius, Niels A1 - Andermann, Christoff A1 - Lupker, Maarten A1 - Haghipour, Negar A1 - Märki, Lena A1 - Sachse, Dirk T1 - Variations in organic carbon sourcing along a trans-Himalayan river determined by a Bayesian mixing approach JF - Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society N2 - Rivers transfer particulate organic carbon (POC) from eroding mountains into geological sinks. Organic carbon source composition and selective mobilization have been shown to affect the type and quantity of POC export, but their combined effects across complex mountain ranges remain underexplored. Here, we examine the variation in organic carbon sourcing and transport in the trans-Himalayan Kali Gandaki River catchment, along strong gradients in precipitation, rock type and vegetation. Combining bulk stable nitrogen, and stable and radioactive organic carbon isotopic composition of bedrock, litter, soil and river sediment samples with a Bayesian end-member mixing approach, we differentiate POC sources along the river and quantify their export. Our analysis shows that POC export from the Tibetan segment of the catchment, where carbon bearing shales are partially covered by aged and modern soils, is dominated by petrogenic POC. Based on our data we re-assess the presence of aged biospheric OC in this part of the catchment, and its contribution to the river load. In the High Himalayan segment, we observed low inputs of petrogenic and biospheric POC, likely due to very low organic carbon concentrations in the metamorphic bedrock, combined with erosion dominated by deep-seated landslides. Our findings show that along the Kali Gandaki River, the sourcing of sediment and organic carbon are decoupled, due to differences in rock organic carbon content, soil and above ground carbon stocks, and geomorphic process activity. While the fast eroding High Himalayas are the principal source of river sediment, the Tibetan headwaters, where erosion rates are lower, are the principal source of organic carbon. To robustly estimate organic carbon export from the Himalayas, the mountain range should be divided into tectono-physiographic zones with distinct organic carbon yields due to differences in substrate and erosion processes and rates. KW - particulate organic carbon KW - Himalaya KW - rivers KW - carbon cycle KW - stable KW - isotopes KW - erosion KW - end-member mixing Y1 - 2020 U6 - https://doi.org/10.1016/j.gca.2020.07.003 SN - 0016-7037 VL - 286 SP - 159 EP - 176 PB - Elsevier CY - New York [u.a.] ER - TY - JOUR A1 - Voss, Katalyn A. A1 - Bookhagen, Bodo A1 - Sachse, Dirk A1 - Chadwick, Oliver A. T1 - Variation of deuterium excess in surface waters across a 5000-m elevation gradient in eastern Nepal JF - Journal of hydrology N2 - The strong elevation gradient of the Himalaya allows for investigation of altitude and orographic impacts on surface water delta O-18 and delta D stable isotope values. This study differentiates the time- and altitude-variable contributions of source waters to the Arun River in eastern Nepal. It provides isotope data along a 5000-m gradient collected from tributaries as well as groundwater, snow, and glacial-sourced surface waters and time-series data from April to October 2016. We find nonlinear trends in delta O-18 and delta D lapse rates with high-elevation lapse rates (4000-6000 masl) 5-7 times more negative than low-elevation lapse rates (1000-3000 masl). A distinct seasonal signal in delta O-18 and delta D lapse rates indicates time-variable source-water contributions from glacial and snow meltwater as well as precipitation transitions between the Indian Summer Monsoon and Winter Westerly Disturbances. Deuterium excess correlates with the extent of snowpack and tracks melt events during the Indian Summer Monsoon season. Our analysis identifies the influence of snow and glacial melt waters on river composition during low-flow conditions before the monsoon (April/May 2016) followed by a 5-week transition to the Indian Summer Monsoon-sourced rainfall around mid-June 2016. In the post-monsoon season, we find continued influence from glacial melt waters as well as ISM-sourced groundwater. KW - stable isotopes KW - Himalaya KW - glacier KW - snow KW - precipitation KW - seasonality Y1 - 2020 U6 - https://doi.org/10.1016/j.jhydrol.2020.124802 SN - 0022-1694 SN - 1879-2707 VL - 586 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Olen, Stephanie M. T1 - Understanding Himalayan denudation at the catchment and orogen scale T1 - Verständnis von Denudation auf regionalem und orogenem Maßstab im Himalaja N2 - Understanding the rates and processes of denudation is key to unraveling the dynamic processes that shape active orogens. This includes decoding the roles of tectonic and climate-driven processes in the long-term evolution of high- mountain landscapes in regions with pronounced tectonic activity and steep climatic and surface-process gradients. Well-constrained denudation rates can be used to address a wide range of geologic problems. In steady-state landscapes, denudation rates are argued to be proportional to tectonic or isostatic uplift rates and provide valuable insight into the tectonic regimes underlying surface denudation. The use of denudation rates based on terrestrial cosmogenic nuclide (TCN) such as 10Beryllium has become a widely-used method to quantify catchment-mean denudation rates. Because such measurements are averaged over timescales of 102 to 105 years, they are not as susceptible to stochastic changes as shorter-term denudation rate estimates (e.g., from suspended sediment measurements) and are therefore considered more reliable for a comparison to long-term processes that operate on geologic timescales. However, the impact of various climatic, biotic, and surface processes on 10Be concentrations and the resultant denudation rates remains unclear and is subject to ongoing discussion. In this thesis, I explore the interaction of climate, the biosphere, topography, and geology in forcing and modulating denudation rates on catchment to orogen scales. There are many processes in highly dynamic active orogens that may effect 10Be concentrations in modern river sands and therefore impact 10Be-derived denudation rates. The calculation of denudation rates from 10Be concentrations, however, requires a suite of simplifying assumptions that may not be valid or applicable in many orogens. I investigate how these processes affect 10Be concentrations in the Arun Valley of Eastern Nepal using 34 new 10Be measurements from the main stem Arun River and its tributaries. The Arun Valley is characterized by steep gradients in climate and topography, with elevations ranging from <100 m asl in the foreland basin to >8,000 asl in the high sectors to the north. This is coupled with a five-fold increase in mean annual rainfall across strike of the orogen. Denudation rates from tributary samples increase toward the core of the orogen, from <0.2 to >5 mm/yr from the Lesser to Higher Himalaya. Very high denudation rates (>2 mm/yr), however, are likely the result of 10Be TCN dilution by surface and climatic processes, such as large landsliding and glaciation, and thus may not be representative of long-term denudation rates. Mainstem Arun denudation rates increase downstream from ~0.2 mm/yr at the border with Tibet to 0.91 mm/yr at its outlet into the Sapt Kosi. However, the downstream 10Be concentrations may not be representative of the entire upstream catchment. Instead, I document evidence for downstream fining of grains from the Tibetan Plateau, resulting in an order-of-magnitude apparent decrease in the measured 10Be concentration. In the Arun Valley and across the Himalaya, topography, climate, and vegetation are strongly interrelated. The observed increase in denudation rates at the transition from the Lesser to Higher Himalaya corresponds to abrupt increases in elevation, hillslope gradient, and mean annual rainfall. Thus, across strike (N-S), it is difficult to decipher the potential impacts of climate and vegetation cover on denudation rates. To further evaluate these relationships I instead took advantage of an along-strike west-to-east increase of mean annual rainfall and vegetation density in the Himalaya. An analysis of 136 published 10Be denudation rates from along strike of the revealed that median denudation rates do not vary considerably along strike of the Himalaya, ~1500 km E-W. However, the range of denudation rates generally decreases from west to east, with more variable denudation rates in the northwestern regions of the orogen than in the eastern regions. This denudation rate variability decreases as vegetation density increases (R=- 0.90), and increases proportionately to the annual seasonality of vegetation (R=0.99). Moreover, rainfall and vegetation modulate the relationship between topographic steepness and denudation rates such that in the wet, densely vegetated regions of the Himalaya, topography responds more linearly to changes in denudation rates than in dry, sparsely vegetated regions, where the response of topographic steepness to denudation rates is highly nonlinear. Understanding the relationships between denudation rates, topography, and climate is also critical for interpreting sedimentary archives. However, there is a lack of understanding of how terrestrial organic matter is transported out of orogens and into sedimentary archives. Plant wax lipid biomarkers derived from terrestrial and marine sedimentary records are commonly used as paleo- hydrologic proxy to help elucidate these problems. I address the issue of how to interpret the biomarker record by using the plant wax isotopic composition of modern suspended and riverbank organic matter to identify and quantify organic matter source regions in the Arun Valley. Topographic and geomorphic analysis, provided by the 10Be catchment-mean denudation rates, reveals that a combination of topographic steepness (as a proxy for denudation) and vegetation density is required to capture organic matter sourcing in the Arun River. My studies highlight the importance of a rigorous and careful interpretation of denudation rates in tectonically active orogens that are furthermore characterized by strong climatic and biotic gradients. Unambiguous information about these issues is critical for correctly decoding and interpreting the possible tectonic and climatic forces that drive erosion and denudation, and the manifestation of the erosion products in sedimentary archives. N2 - Schlüssel im Verständnis der dynamischen Prozesse in aktiven Orogenen ist die Kenntnis der Abtragungsraten und -prozesse. Eine breite Auswahl geologischer Fragen können mit well-constrained Abtragungsraten erörtert werden. Sind Landschaften im Gleichgewicht so sind die Denudationsraten proportional zu den tektonischen und isostatischen Hebungsraten und geben somit wichtige Hinweise über die tektonischen Eigenschaften der Region. Eine weit verbreitete und etablierte Methode zur Bestimmung mittlerer Denudationsraten eines bestimmten Einzugsgebietes ist Beryllium-10, ein terrestrisches kosmogenes Nuklid (10Be TCN). 10Be TCN Messungen stellen durchschnittliche Abtragungsraten über einen Zeitraum von 10^2 – 10^5 Jahren dar und sind daher weniger verletzlich gegenüber stochastischen Änderungen wie Erosionsraten, die über einen kurzen Zeitraum ermittelt werden z.B. in Suspension. Sie sind daher zuverlässig einsetzbar um langfristige Prozesse zu vergleichen. Allerdings ist unklar welche Einfluss verschiedene klimatische, biologische oder erdoberflächen Prozesse auf die 10Be Konzentration ausüben und somit auch auf die resultierenden Abtragungsraten. In dieser Doktorarbeit, setze ich mich mit dem Zwischenspiel von Klima, Biosphäre, Topographie und Geologie auseinander und dem Einfluss, den sie auf Abtragungsraten ausüben sowohl auf regionalem wie auch auf orogenem Maßstab. In hoch dynamischen aktiven Gebirgen gibt es viele Prozesse, welche die 10Be Konzentration in heutigen Flusssanden beeinflussen und damit auch die, mittels 10Be berechneten, Abtragungsraten. Um diese Raten mittels 10Be Konzentrationen zu berechnen benötigen wir einige vereinfachende Annahmen, die möglicherweise in anderen Regionen keine Gültigkeit haben. Ich untersuche den Einfluss dieser Prozesse auf die 10Be Konzentration. Dazu haben wir im Arun Tal im Osten Nepals 34 neue 10Be Konzentrationen des Arun Flusses und seinen Zuflüssen untersucht. Charakteristisch für das Arun Tal sind die steilen Gradienten im Klima mit einem fünffachen Anstieg des mittleren jährlichen Regenfalls über das Orogens, und in der Topographie mit Höhen von weniger als 100 m über Meer im Vorlandbecken bis über 8000 m über Meer im Gebirge. Die Abtragungsraten der Proben der Zuflüsse nehmen gegen das Zentrum des Gebirges von weniger <0.2 zu mehr als >5 mm/yr zu d.h. ansteigend vom Lesser zum Higher Himalaya. Sehr hohe Denudationsraten (> 2mm/yr) können durch erdoberflächen und klimatische Prozesse verwässert werden z. B. grosse Erdrutsche und Vergletscherungen, und sind daher nicht unbedingt repräsentativ für langzeitliche Abtragungsraten. Im Arun nehmen die Raten des Hauptflusses flussabwärts von 0.2 mm/yr im Bereich der Grenze zu Tibet auf 0.91 mm/yr am Ausfluss in Sapt Kosi zu. Es ist möglich, dass diese 10Be Konzentrationen nicht das vollständige flussauswärtsliegende Einzugsgebiet repräsentieren. Stattdessen lege ich dar wie sich die Korngrösse ab dem tibetischen Plateau verfeinert und dazu führt, dass die 10Be Konzentrationen offenkundig im Bereich einer Grössenordnung abnehmen. Im Arun Tal und sowie über den ganzen Himalaja sind Topographie, Klima und Vegetation sehr stark miteinander verbunden. Das Ansteigen der Denudationsraten im Übergang vom Lesser zum Higher Himalaya stimmt mit dem abrupten Ansteigen der Höhe, des Hangneigungsgradienten und des mittleren jährlichen Regenfalles überein. Es ist schwierig die möglichen Einflüssen von Klima und der Vegetationsdichte auf die Abtragungsraten über das Orogen hinweg (N-S) zu entziffern. Stattdessen, nutzen wir den Vorteil der, von West nach Ost, parallel zum Himalaja verlaufenden, Zunahme des mittleren jährlichen Regenfalles und der Vegetationsdichte. Eine Analyse 136 publizierter 10Be TCN Abtragungsraten entlang des Gebirges, zeigt dass die im Streichen liegenden mittleren Denudationsraten (ca. 1500 km Ost-West) nicht deutlich variieren. Generell sinkt die Wertebereich der Denudationsraten vom Westen gegen Osten, wobei in den nordwestlichen Regionen des Himalajas variablere Abtragungsraten vorherrschen als in den östlichen Regionen. Diese Vielfalt in den Denudationsraten sinkt mit steigender Vegetationsdichte (R=-0.90) und steigt proportional zur (jährlichen) Saisonalität der Vegetation (R=0.99). Vielmehr noch wird das Verhältnis zwischen der topographischen Steilheit und den Abtragungsraten durch Regen und Vegetation beeinflusst z. B. in feuchten Gebieten mit starker Vegetation reagiert die Topographie linearer auf Wechsel in den Abtragungsraten als in trockenen, kaum bewachsenen Regionen, wo die Reaktion der topographischen Steilheit auf die Denudationsraten äusserst nicht-linear ist. Das Verständnis der Beziehung zwischen Erosion, Topographie und Klima ist auch entscheidend für die Interpretation von Sedimentarchiven. Unser Wissen über die Repräsentativität von terrestrisches organisches Material, abgelagert in z.B. Flussdeltas, für die Einzugsgebiete der entsprechenden Flüsse, ist nach wie vor nur vage. Dennoch sind Blattwachse höherer Landpflanzen, extrahiert aus terrestrischen und marinen Sedimenten, ein häufig verwendeter paläohydrologischer Proxy. Im Rahmen dieser Arbeit nutzen wir die Isotopenzusammensetzung von Pflanzenwachsen aus Suspensionsmaterial und aus Flusssedimenten als Herkunftsmarker und zur Quantifizierung des organischen Materials im Arun Tal. Die Analyse von Vegetationsdichte und Regenverteilung in Kombination mit Abtragungsraten des Einzugsgebietes, welche durch die mittleren 10Be-Erosionsraten gestützt werden, zeigen, dass das Vorhandensein dichter Vegetation ein zwar notwendiges, aber nicht hinreichendes Kriterium für hohen OM-Export ist. Vielmehr können wir zeigen, dass nur eine Kombination aus dichter Vegetationsdecke und Erosion zu hohem OM-Export führt. Für die Interpretation entspechender Archive bedeutet das, dass sie im Wesentlichen jene Bereiche des Einzugsgebietes repräsentieren, welche durch hohe Pflanzendichte und starke Erosion charakterisiert sind. Diese Studien belegen wie wichtig es ist die Abtragungsraten in aktiven Gebirgen umfassend zu verstehen. Für die Interpretation kann dieses Verständnis der möglichen tektonischen und klimatischen Gewalten, welche Erosion und Abtragung steuern, und auch das Verständnis der Sedimentarchive aus den Gebirgen stammend, entscheidend sein. KW - geology KW - geomorphology KW - Himalaya KW - Geologie KW - Geomorphologie KW - Himalaja Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-91423 ER - TY - JOUR A1 - Schwanghart, Wolfgang A1 - Ryan, Marie A1 - Korup, Oliver T1 - Topographic and seismic constraints on the vulnerability of himalayan hydropower JF - Geophysical research letters N2 - Plain Language Summary The 2015 Gorkha earthquake in Nepal caused severe losses in the hydropower sector. The country temporarily lost similar to 20% of its hydropower capacity, and >30 hydropower projects were damaged. The projects hit hardest were those that were affected by earthquake-triggered landslides. We show that these projects are located along very steep rivers with towering sidewalls that are prone to become unstable during strong seismic ground shaking. A statistical classification based on a topographic metric that expresses river steepness and earthquake ground acceleration is able to approximately predict hydropower damage during future earthquakes, based on successful testing of past cases. Thus, our model enables us to estimate earthquake damages to hydropower projects in other parts of the Himalayas. We find that >10% of the Himalayan drainage network may be unsuitable for hydropower infrastructure given high probabilities of high earthquake damages. KW - natural hazards KW - hydropower KW - landslides KW - Himalaya Y1 - 2018 U6 - https://doi.org/10.1029/2018GL079173 SN - 0094-8276 SN - 1944-8007 VL - 45 IS - 17 SP - 8985 EP - 8992 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Govin, Gwladys A1 - Najman, Yani A1 - Dupont-Nivet, Guillaume A1 - Millar, Ian A1 - van der Beek, Peter A1 - Huyghe, Pascale A1 - Mark, Chris A1 - Vogeli, Natalie T1 - The tectonics and paleo-drainage of the easternmost Himalaya (Arunachal Pradesh, India) recorded in the Siwalik rocks of the foreland basin JF - American Journal of Science N2 - The Siwalik sedimentary rocks of the Himalayan foreland basin preserve a record of Himalayan orogenesis, paleo-drainage evolution, and erosion. This study focuses on the still poorly studied easternmost Himalaya Siwalik record located directly downstream of the Namche Barwa syntaxis. We use luminescence, palaeomagnetism, magnetostratigraphy, and apatite fission-track dating to constrain the depositional ages of three Siwalik sequences: the Sibo outcrop (Upper Siwalik sediments at ca. 200-800 ka), the Remi section (Middle and Upper Siwalik rocks at >0.8-<8.8 +/- 2.4 Ma), and the Siang section (Middle Siwalik rocks at <9.3 +/- 1.5 to <13.5 +/- 1.5 Ma). Cretaceous-Paleogene detrital zircon and apatite U-Pb ages, characteristic of the Transhimalayan Gangdese Batholiths that crop out northwest of the syntaxis, are present throughout the Sibo, Remi, and Siang successions, confirming the existence of a Yarlung-Brahmaputra connection since at least the Late Miocene. A ca. 500 Ma zircon population increases up section, most strikingly sometime between 3.6 to 6.6 Ma, at the expense of Transhimalayan grains. We consider the ca. 500 Ma population to be derived from the Tethyan or Greater Himalaya, and we interpret the up-section increase to reflect progressive exhumation of the Namche Barwa syntaxis. Early Cretaceous zircon and apatite U-Pb ages are rare in the Sibo, Remi, and Siang successions, but abundant in modern Siang River sediments. Zircons of this age range are characteristic of the Transhimalayan Bomi-Chayu batholiths, which crop out east of the syntaxis and are eroded by the Parlung River, a modern tributary of the Siang River. We interpret the difference in relative abundance of Early Cretaceous zircons between the modern and ancient sediments to reflect capture of the Parlung by the Siang after 800 ka. KW - Himalaya KW - Siwaliks KW - Namche Barwa syntaxis KW - Brahmaputra River KW - Parlung River KW - detrital geochronology and thermochronology Y1 - 2018 U6 - https://doi.org/10.2475/07.2018.02 SN - 0002-9599 SN - 1945-452X VL - 318 IS - 7 SP - 764 EP - 798 PB - Kline Geology Laboratory, Yale University CY - New Haven ER - TY - JOUR A1 - Regmi, Shakil A1 - Bookhagen, Bodo T1 - The spatial pattern of extreme precipitation from 40 years of gauge data in the central Himalaya JF - Weather and climate extremes N2 - The topography of the Himalaya exerts a substantial control on the spatial distribution of monsoonal rainfall, which is a vital water source for the regional economy and population. But the occurrence of short-lived and high-intensity precipitation results in socio-economic losses. This study relies on 40 years of daily data from 204 ground stations in Nepal to derive extreme precipitation thresholds, amounts, and days at the 95th percentile. We additionally determine the precipitation magnitude-frequency relation. We observe that extreme precipitation amounts follow an almost uniform band parallel to topographic contour lines in the southern Himalaya mountains in central and eastern Nepal but not in western Nepal. The relationship of extreme precipitation indices with topographic relief shows that extreme precipitation thresholds decrease with increasing elevation, but extreme precipitation days increase in higher elevation areas. Furthermore, stations above 1 km elevation exhibit a power-law relation in the rainfall magnitude-frequency framework. Stations at higher elevations generally have lower values of power-law exponents than low elevation areas. This suggests a fundamentally different behaviour of the rainfall distribution and an increased occurrence of extreme rainfall storms in the high elevation areas of Nepal. KW - Himalaya KW - Nepal KW - Indian summer monsoon KW - Precipitation KW - Extreme KW - precipitation Y1 - 2022 U6 - https://doi.org/10.1016/j.wace.2022.100470 SN - 2212-0947 VL - 37 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Meese, Bernd A1 - Bookhagen, Bodo A1 - Olen, Stephanie M. A1 - Barthold, Frauke Katrin A1 - Sachse, Dirk T1 - The effect of Indian Summer Monsoon rainfall on surface water delta D values in the central Himalaya JF - Hydrological processes N2 - Stable isotope proxy records, such as speleothems, plant-wax biomarker records, and ice cores, are suitable archives for the reconstruction of regional palaeohydrologic conditions. But the interpretation of these records in the tropics, especially in the Indian Summer Monsoon (ISM) domain, is difficult due to differing moisture and water sources: precipitation from the ISM and Winter Westerlies, as well as snow- and glacial meltwater. In this study, we use interannual differences in ISM strength (2011-2012) to understand the stable isotopic composition of surface water in the Arun River catchment in eastern Nepal. We sampled main stem and tributary water (n = 204) for stable hydrogen and oxygen isotope analysis in the postmonsoon phase of two subsequent years with significantly distinct ISM intensities. In addition to the 2011/2012 sampling campaigns, we collected a 12-month time series of main stem waters (2012/2013, n = 105) in order to better quantify seasonal effects on the variability of surface water delta O-18/delta D. Furthermore, remotely sensed satellite data of rainfall, snow cover, glacial coverage, and evapotranspiration was evaluated. The comparison of datasets from both years revealed that surface waters of the main stem Arun and its tributaries were D-enriched by similar to 15 parts per thousand when ISM rainfall decreased by 20%. This strong response emphasizes the importance of the ISM for surface water run-off in the central Himalaya. However, further spatio-temporal analysis of remote sensing data in combination with stream water d-excess revealed that most high-altitude tributaries and the Tibetan part of the Arun receive high portions of glacial melt water and likely Winter Westerly Disturbances precipitation. We make the following two implications: First, palaeohydrologic archives found in high-altitude tributaries and on the southern Tibetan Plateau record a mixture of past precipitation delta D values and variable amounts of additional water sources. Second, surface water isotope ratios of lower elevated tributaries strongly reflect the isotopic composition of ISM rainfall implying a suitable region for the analysis of potential delta D value proxy records. KW - Himalaya KW - palaeoclimate records KW - snow melt KW - stream water KW - water isotopes Y1 - 2018 U6 - https://doi.org/10.1002/hyp.13281 SN - 0885-6087 SN - 1099-1085 VL - 32 IS - 24 SP - 3662 EP - 3674 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Scherler, Dirk A1 - Bookhagen, Bodo A1 - Strecker, Manfred T1 - Tectonic control on Be-10-derived erosion rates in the Garhwal Himalaya, India JF - Journal of geophysical research : Earth surface N2 - Erosion in the Himalaya is responsible for one of the greatest mass redistributions on Earth and has fueled models of feedback loops between climate and tectonics. Although the general trends of erosion across the Himalaya are reasonably well known, the relative importance of factors controlling erosion is less well constrained. Here we present 25 Be-10-derived catchment-averaged erosion rates from the Yamuna catchment in the Garhwal Himalaya, northern India. Tributary erosion rates range between similar to 0.1 and 0.5mmyr(-1) in the Lesser Himalaya and similar to 1 and 2mmyr(-1) in the High Himalaya, despite uniform hillslope angles. The erosion-rate data correlate with catchment-averaged values of 5 km radius relief, channel steepness indices, and specific stream power but to varying degrees of nonlinearity. Similar nonlinear relationships and coefficients of determination suggest that topographic steepness is the major control on the spatial variability of erosion and that twofold to threefold differences in annual runoff are of minor importance in this area. Instead, the spatial distribution of erosion in the study area is consistent with a tectonic model in which the rock uplift pattern is largely controlled by the shortening rate and the geometry of the Main Himalayan Thrust fault (MHT). Our data support a shallow dip of the MHT underneath the Lesser Himalaya, followed by a midcrustal ramp underneath the High Himalaya, as indicated by geophysical data. Finally, analysis of sample results from larger main stem rivers indicates significant variability of Be-10-derived erosion rates, possibly related to nonproportional sediment supply from different tributaries and incomplete mixing in main stem channels. KW - Himalaya KW - erosion KW - tectonics KW - cosmogenic nuclides KW - channel steepness KW - stream power Y1 - 2014 U6 - https://doi.org/10.1002/2013JF002955 SN - 2169-9003 SN - 2169-9011 VL - 119 IS - 2 SP - 83 EP - 105 PB - American Geophysical Union CY - Washington ER - TY - THES A1 - Thiede, Rasmus Christoph T1 - Tectonic and climatic controls on orogenic processes : the Northwest Himalaya, India N2 - The role of feedback between erosional unloading and tectonics controlling the development of the Himalaya is a matter of current debate. The distribution of precipitation is thought to control surface erosion, which in turn results in tectonic exhumation as an isostatic compensation process. Alternatively, subsurface structures can have significant influence in the evolution of this actively growing orogen. Along the southern Himalayan front new 40Ar/39Ar white mica and apatite fission track (AFT) thermochronologic data provide the opportunity to determine the history of rock-uplift and exhumation paths along an approximately 120-km-wide NE-SW transect spanning the greater Sutlej region of the northwest Himalaya, India. 40Ar/39Ar data indicate, consistent with earlier studies that first the High Himalayan Crystalline, and subsequently the Lesser Himalayan Crystalline nappes were exhumed rapidly during Miocene time, while the deformation front propagated to the south. In contrast, new AFT data delineate synchronous exhumation of an elliptically shaped, NE-SW-oriented ~80 x 40 km region spanning both crystalline nappes during Pliocene-Quaternary time. The AFT ages correlate with elevation, but show within the resolution of the method no spatial relationship to preexisting major tectonic structures, such as the Main Central Thrust or the Southern Tibetan Fault System. Assuming constant exhumation rates and geothermal gradient, the rocks of two age vs. elevation transects were exhumed at ~1.4 ±0.2 and ~1.1 ±0.4 mm/a with an average cooling rate of ~50-60 °C/Ma during Pliocene-Quaternary time. The locus of pronounced exhumation defined by the AFT data coincides with a region of enhanced precipitation, high discharge, and sediment flux rates under present conditions. We therefore hypothesize that the distribution of AFT cooling ages might reflect the efficiency of surface processes and fluvial erosion, and thus demonstrate the influence of erosion in localizing rock-uplift and exhumation along southern Himalayan front, rather than encompassing the entire orogen.Despite a possible feedback between erosion and exhumation along the southern Himalayan front, we observe tectonically driven, crustal exhumation within the arid region behind the orographic barrier of the High Himalaya, which might be related to and driven by internal plateau forces. Several metamorphic-igneous gneiss dome complexes have been exhumed between the High Himalaya to the south and Indus-Tsangpo suture zone to the north since the onset of Indian-Eurasian collision ~50 Ma ago. Although the overall tectonic setting is characterized by convergence the exhumation of these domes is accommodated by extensional fault systems.Along the Indian-Tibetan border the poorly described Leo Pargil metamorphic-igneous gneiss dome (31-34°N/77-78°E) is located within the Tethyan Himalaya. New field mapping, structural, and geochronologic data document that the western flank of the Leo Pargil dome was formed by extension along temporally linked normal fault systems. Motion on a major detachment system, referred to as the Leo Pargil detachment zone (LPDZ) has led to the juxtaposition of low-grade metamorphic, sedimentary rocks in the hanging wall and high-grade metamorphic gneisses in the footwall. However, the distribution of new 40Ar/39Ar white mica data indicate a regional cooling event during middle Miocene time. New apatite fission track (AFT) data demonstrate that subsequently more of the footwall was extruded along the LPDZ in a brittle stage between 10 and 2 Ma with a minimum displacement of ~9 km. Additionally, AFT-data indicate a regional accelerated cooling and exhumation episode starting at ~4 Ma. Thus, tectonic processes can affect the entire orogenic system, while potential feedbacks between erosion and tectonics appear to be limited to the windward sides of an orogenic systems. N2 - Welche Rolle Wechselwirkungen zwischen der Verteilung des Niederschlags, Erosion und Tektonik während der Entwicklung des Himalayas über geologische Zeiträume gespielt haben bzw. heute spielen, ist umstritten. Dabei ist von besonderem Interesse, ob Erosion ausschliesslich in Folge tiefkrustaler Hebungsprozesse entsteht und gesteuert wird, oder ob Regionen besonders effektiver Erosion, bedingt durch isostatische Kompensation, die Lokation tektonischer Deformation innerhalb aktiver Orogene beeinflussen können. Entlang der südlichen Himalayafront ermöglichen neue thermochronologische 40Ar/39Ar-Hellglimmer- und Apatite-Spaltspur-Alter die Bestimmung der Exhumationspfade entlang eines 120-km-langen NE-SW-gerichteten Profils, dass quer durch die gesamte Sutlej-Region des nordwestlichen, indischen Himalayas verläuft. Dabei deuten die 40Ar/39Ar-Daten in übereinstimmung mit früheren Studien darauf hin, dass zuerst das Kristallin des Hohen Himalayas und anschliessend, südwärts propagierend, das Kristallin des Niederen Himalayas während des Miozäns exhumiert worden ist. Im Gegensatz dazu weisen die neuen Apatit-Spaltspur-Alter auf eine gleichmässige und zeitgleiche Exhumation beider kristallinen Decken entlang des Sutlejflusses. Dieser 80x40 km weite Bereich formt einen elliptischen, nordost-südwest orientierten Sektor erhöhter Exhumationsraten während des Pliozäns und Quartärs. Innerhalb des Fehlerbereichs der Spaltspurmethode zeigen die Alter eine gute Korrelation mit der Höhe, zeigen aber gleichzeitig keine Abhängigkeit zu bedeutenden tektonischen Störungen, wie die "Main Central Thrust" oder dem "Southern Tibetan Fault System". Unter der vereinfachten Annahme konstanter Exhumationsraten deuten zwei verschiedene Höhenprofile auf Exhumationraten in der Grössenordnung von ~1,4 ±0,2 und ~1,1 ±0,4 mm/a bei einer durchschnittlichen Abkühlrate von ~50-60 °C/m.y. während des Pliozäns bzw. Quartärs hin. Der anhand von Spaltspuraltern bestimmte Sektor verstärkter Exhumation korreliert mit dem Gebiet, das während des Holozäns hohen Niederschlags-, Erosion- bzw. Sedimenttransportraten ausgesetzt ist. Daher vermuten wir, dass die Verteilung von jungen Spaltspuraltern den regionalen Grad der Effiziens von Oberflächenprozessen und fluviatiler Erosion wiederspiegelt. Dies deutet auf einen Zusammenhang zwischen Erosion und der Lokalisierung von Hebung und Exhumation entlang der südlichen Front des Himalayas hin, und zeigt gleichzeitig, dass die Exhumation nicht einfach über die gesamte Front gleichmässig verteilt ist.Trotz der Wechselwirkungen zwischen Exhumation und Erosion, die möglicherweise die Entwicklung der südlichen Himalayafront beeinflussen, beobachten wir auch tiefkrustale tektonische Exhumation in ariden Gebieten nördlich des Hohen Himalayas, die vermutlich im Zusammenhang mit plateauinternenen Deformationsprozessen steht. So haben sich zum Beispiel mehrere metaplutonische Gneissdomkomplexe zwischen dem Hohen Himalaya im Süden und der Indus-Tsangpo Suturzone im Norden seit der Indien-Asien Kollision vor ca. 50 Millionen Jahren entwickelt. Obwohl die Dome sich grossräumig in einem kommpressiven Spannungsfeld befinden, werden sie lokal entlang von Extensionsstrukturen exhumiert. Bis heute sind die Ursachen für die Entstehung dieser Prozesse umstritten.Entlang der Indisch-Tibetischen Grenze erstreckt sich der fast vollkommen unbeschriebene Leo-Pargil-Gneissdomkomplex (31-34°N/77-78°E) innerhalb des Tethyschen Himalayas. Neue Geländekartierungen, strukturelle und geochronologische Daten der westliche Flanke des Leo Pargil Domes dokumentieren, dass dieser sich entlang zeitlich verbundener Abschiebungssysteme in einem extensionalen Regime entwickelt hat. Im Gelände wird der Dome von einem mächtigen Störungssystem begrenzt, die "Leo Pargil Detachment Zone" (LPDZ). Durch den tektonischen Versatz entlang der LPDZ liegen heute niedriggradig metamorphe Sedimentgesteine im Hangenden neben hochgradigen Gneisen in Liegenden. Unabhängig von der Probenlokation entlang des aufgeschlossenen Störungssystemes ergeben alle neuen 40Ar/39Ar-Hellglimmeralter um die 15 Ma und deuten auf ein regional wichtiges Abkühlungsereignis hin. Im Gegensatz dazu deuten die neuen Apatit-Spaltspuralter (AFT) auf eine kontinuierliche Exhumation der hochmetamorphen Einheiten im Liegenden der LPDZ unter sprödtektonischen Bedingungen zwischen 10 und 2 Ma hin, bei einem minimalen Versatz von ungefähr 9 km. Desweiteren deuten die Apatit-Spaltspur-Daten auf überregionale beschleunigte Abkülhlungs- bzw Exhumationsphase seit 4 Ma.Daraus kann gefolgert werden, dass die tektonischen Prozesse die Entwicklung des gesamten Gebirges beflussen können, während potenzielle Wechselwirkungen zwischen Erosion und Tektonik auf die luvwärtigen Gebirgsflanken beschränkt zu bleiben scheinen. KW - Gebirgsbildung KW - Erosion KW - Hebung KW - Himalaya KW - Spalt Spuren KW - Thermochronologie KW - Klima KW - Monsoon KW - Indien KW - Orogen KW - erosion KW - uplift KW - Himalaya KW - fission track KW - thermochronology KW - climate KW - monsoon KW - India Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-2281 ER - TY - THES A1 - Ghani, Humaad T1 - Structural evolution of the Kohat and Potwar fold and thrust belts of Pakistan T1 - Strukturelle Entwicklung des Kohat und Potwar Falten- und Überschiebungsgürtel in Pakistan N2 - Fold and thrust belts are characteristic features of collisional orogen that grow laterally through time by deforming the upper crust in response to stresses caused by convergence. The deformation propagation in the upper crust is accommodated by shortening along major folds and thrusts. The formation of these structures is influenced by the mechanical strength of décollements, basement architecture, presence of preexisting structures and taper of the wedge. These factors control not only the sequence of deformation but also cause differences in the structural style. The Himalayan fold and thrust belt exhibits significant differences in the structural style from east to west. The external zone of the Himalayan fold and thrust belt, also called the Subhimalaya, has been extensively studied to understand the temporal development and differences in the structural style in Bhutan, Nepal and India; however, the Subhimalaya in Pakistan remains poorly studied. The Kohat and Potwar fold and thrust belts (herein called Kohat and Potwar) represent the Subhimalaya in Pakistan. The Main Boundary Thrust (MBT) marks the northern boundary of both Kohat and Potwar, showing that these belts are genetically linked to foreland-vergent deformation within the Himalayan orogen, despite the pronounced contrast in structural style. This contrast becomes more pronounced toward south, where the active strike-slip Kalabagh Fault Zone links with the Kohat and Potwar range fronts, known as the Surghar Range and the Salt Range, respectively. The Surghar and Salt Ranges developed above the Surghar Thrust (SGT) and Main Frontal Thrust (MFT). In order to understand the structural style and spatiotemporal development of the major structures in Kohat and Potwar, I have used structural modeling and low temperature thermochronolgy methods in this study. The structural modeling is based on construction of balanced cross-sections by integrating surface geology, seismic reflection profiles and well data. In order to constrain the timing and magnitude of exhumation, I used apatite (U-Th-Sm)/He (AHe) and apatite fission track (AFT) dating. The results obtained from both methods are combined to document the Paleozoic to Recent history of Kohat and Potwar. The results of this research suggest two major events in the deformation history. The first major deformation event is related to Late Paleozoic rifting associated with the development of the Neo-Tethys Ocean. The second major deformation event is related to the Late Miocene to Pliocene development of the Himalayan fold and thrust belt in the Kohat and Potwar. The Late Paleozoic rifting is deciphered by inverse thermal modelling of detrital AFT and AHe ages from the Salt Range. The process of rifting in this area created normal faulting that resulted in the exhumation/erosion of Early to Middle Paleozoic strata, forming a major unconformity between Cambrian and Permian strata that is exposed today in the Salt Range. The normal faults formed in Late Paleozoic time played an important role in localizing the Miocene-Pliocene deformation in this area. The combination of structural reconstructions and thermochronologic data suggest that deformation initiated at 15±2 Ma on the SGT ramp in the southern part of Kohat. The early movement on the SGT accreted the foreland into the Kohat deforming wedge, forming the range front. The development of the MBT at 12±2 Ma formed the northern boundary of Kohat and Potwar. Deformation propagated south of the MBT in the Kohat on double décollements and in the Potwar on a single basal décollement. The double décollement in the Kohat adopted an active roof-thrust deformation style that resulted in the disharmonic structural style in the upper and lower parts of the stratigraphic section. Incremental shortening resulted in the development of duplexes in the subsurface between two décollements and imbrication above the roof thrust. Tectonic thickening caused by duplexes resulted in cooling and exhumation above the roof thrust by removal of a thick sequence of molasse strata. The structural modelling shows that the ramps on which duplexes formed in Kohat continue as tip lines of fault propagation folds in the Potwar. The absence of a double décollement in the Potwar resulted in the preservation of a thick sequence of molasse strata there. The temporal data suggest that deformation propagated in-sequence from ~ 8 to 3 Ma in the northern part of Kohat and Potwar; however, internal deformation in the Kohat was more intense, probably required for maintaining a critical taper after a significant load was removed above the upper décollement. In the southern part of Potwar, a steeper basement slope (β≥3°) and the presence of salt at the base of the stratigraphic section allowed for the complete preservation of the stratigraphic wedge, showcased by very little internal deformation. Activation of the MFT at ~4 Ma allowed the Salt Range to become the range front of the Potwar. The removal of a large amount of molasse strata above the MFT ramp enhanced the role of salt in shaping the structural style of the Salt Range and Kalabagh Fault Zone. Salt accumulation and migration resulted in the formation of normal faults in both areas. Salt migration in the Kalabagh fault zone has triggered out-of-sequence movement on ramps in the Kohat. The amount of shortening calculated between the MBT and the SGT in Kohat is 75±5 km and between the MBT and the MFT in Potwar is 65±5 km. A comparable amount of shortening is accommodated in the Kohat and Potwar despite their different widths: 70 km Kohat and 150 km Potwar. In summary, this research suggests that deformation switched between different structures during the last ~15 Ma through different modes of fault propagation, resulting in different structural styles and the out-of-sequence development of Kohat and Potwar. N2 - Falten- und Überschiebungsgürtel sind charakteristische Merkmale von Kollisionsorogenen, die sich im Laufe der Zeit als Reaktion auf konvergente Spannungen in das Vorland vorbauen. Die Deformationsausbreitung in der oberen Kruste erfolgt durch die Verkürzung entlang von Falten und Überschiebungen. Die Bildung dieser Strukturen wird durch die mechanische Eigenschaft des Décollements (Abscherhorizonts), dem Aufbau des Grundgebirges, der strukturellen Vorprägung und der Geometrie des Verfomungskeils beeinflusst. Diese Faktoren steuern nicht nur die Verformungsabfolge, sondern führen auch zu unterschiedlichen Strukturen im Falten- und Überschiebungsgürtel. Der Himalaya Falten- und Überschiebungsgürtel zeigt signifikante Unterschiede im strukturellen Bau von Ost nach West. Die äußere Zone des Himalaya Falten- und Überschiebungsgürtel, auch Subhimalaya genannt, ist hinsichtlich der zeitliche Entwicklung und des strukturellen Baus in der Region von Bhutan, Nepal und Indien gut untersucht. Im Gegensatz dazu ist die Geologie des pakistanischen Subhimalayas erst in groben Zügen verstanden. Der Kohat- und der Potwar- Falten- und Überschiebungsgürtel (im Folgenden einfach Kohat und Potwar genannt) sind Teil der externe Sedimentationszone des Himalaya- Falten- und Überschiebungsgürtel in Pakistan. Die „Main Boundary Thrust“ (MBT) markiert ihre nördliche Grenze und zeigt, dass beide, sowohl Kohat als auch Potwar, trotz ihres unterschiedlichen strukturellen Baus durch eine gemeinsame, ins Vorland gerichteten Verformung des Himalaya-Orogens entstanden sind. Der Kontrast im strukturelle Bau wird nach Süden ausgeprägter, wo die aktive Kalabagh Seitenverschiebung die frontalen Deformationszonen Kohats und Potwars verbindet, die als „Surghar Range“ bzw. „Salt Range“ bekannt sind. Die „Surghar Range“ und die „Salt Range“ entwickeln sich oberhalb der Surghar Überschiebung (Surghar Thrust, SGT) und der frontalen Hauptüberschiebung (Main Frontal Thrust, MFT). Ziel dieser Studie ist es, die Deformationsentwicklung und den strukturellen Bau Kohats und Potwars als Beispiel für die Vielfalt der Entwicklung im frontalen Bereich von Orogenen zu entschlüsseln. Um den strukturellen Stil und die räumlich-zeitliche Entwicklung der Hauptstrukturen in Kohat und Potwar zu untersuchen, werden in dieser Studie Strukturmodellierungs- und Niedertemperatur-Thermochronologie-Methoden verwendet. Die Strukturmodellierung basiert auf der Erstellung bilanzierter Profile, deren Grundlage die Kombination von Oberflächengeologie, seismischen Reflexionsprofilen und Bohrlochdaten bildet. Die Niedertemperatur-Thermochronologie-Methoden gründen einerseits auf Apatit (U-Th-Sm)/He (AHe) und andererseits auf Apatit-Spaltspur (AFT) Datierungen. Die Resultate beider Methoden erlauben die zeitliche Rekonstruktion von Kohat und Potwar vom Paläozoikum bis zur jüngsten Geschichte. Die Ergebnisse dieser Studie deuten auf zwei Hauptereignisse in der Verformungsgeschichte hin. Das erste große Deformationsereignis steht im Zusammenhang mit der spätpaläozoischen Riftbildung im Zuge der Öffnung der Neotethys. Das zweite große Deformationsereignis steht im Zusammenhang mit der spätmiozänen bis pliozänen Entwicklung des Himalaya Falten- und Überschiebungsgürtel. Die spät-paläozoische Riftbildung wird mittels einer inversen thermischen Modellierung der Apatit-AFT und AHe-Alter aus der „Salt Range“ rekonstruiert. Der Prozess des Riftbildung verursachte Abschiebungen, die zur Exhumierung bzw. Erosion früh- bis mittelpaläozoischer Schichten führte und eine bedeutende Diskordanz zwischen kambrischen und permischen Schichten ausbildet, die heute in der „Salt Range“ aufgeschlossen ist. Diese im Spätpaläozoikum entstandenen Abschiebungen wurden dann während der miozän-pliozänen Bildung des Falten- und Überschiebungsgürtel reakiviert. Die Rekonstruktion der Strukturen, kombiniert mit der Datierung (AFT, AHe), deutet darauf hin, dass die Verformung um ca. 15±2 Ma auf der SGT-Rampe im südlichen Teil Kohats aktiv war. Diese erste Deformation entlang der SGT hat das Vorland an den Kohat-Verformungskeil geschweisst und bildet damit die neue Verformungsfront. Die MBT bildete um ca. 12±2 Ma die nördliche Grenze von Kohat und Potwar. Die Deformation breitete sich in südlicher Richtung von der MBT aus in Kohat auf zwei Décollements aus, während sich in Potwar ein einziges basales Décollement bildete. Die beiden parallelen Décollements in Kohat formten aktive Dachüberschiebungen aus, die zum disharmonischen Stil im oberen und unteren Teil des Profils führten. Die inkrementelle Verkürzung formte Duplex-Strukturen zwischen den beiden Décollements und Schuppen oberhalb der Dachüberschiebung. Auf die tektonische Verdickung durch die Duplex-Strukturen folgte die Abkühlung bzw. Exhumation oberhalb der Dachüberschiebung durch die Abtragung mächtiger Molasseschichten. Die Rekonstruktion der Strukturen zeigt, dass die Rampen, auf denen die Duplex-Strukturen in Kohat gebildet wurden, sich in Potwar als Frontallinien der frontalen Knickung fortsetzen. Das Fehlen der beiden parallelen Décollements in Potwar führte zur Erhaltung dicker Molassenschichten in der stratigraphischen Abfolge. Die Ergebnisse der Datierung deuten darauf hin, dass sich die Verformung dann von ca. 8 bis 3 Ma normal im nördlichen Teil von Kohat und Potwar in Richtung Süden ausbreitete. Die Verformung in Kohat war intensiver durch die Bildung eines kritischen Winkels im Deformationskeil, als die signifikante Auflast über dem oberen Décollement entfernt wurde. Der südliche Teil Potwars dagegen ist durch eine geringe interne Verfomung gekennzeichnet, hervorgerufen durch eine geringere Neigung der basalen Überschiebung (β≥3°) und das Vorhandensein von Salz an der Basis der stratigraphischen Abfolge. Dabei ist stratigraphische Abfolge innerhalb des Deformationskeils erhalten. Mit der Deformation entlang der MFT um ca. 4 Ma begann die Entwicklung der „Salt Range“ als frontale Deformationszone von Potwar. Die Abtragung dicker Molassenschichten über der MFT-Rampe verstärkte die Rolle des Salzes bei der Deformation der „Salt Range“ und der Kalabagh-Störungszone. In beiden Gebieten kam es zu Abschiebungen duch Salzakkumulation und Salzmigration. Die Salzmigration in der Kalabagh- Störungszone hat durchbrechende Überschiebungen entlang der Rampen in Kohat ausgelöst. Der Verkürzungsbetrag zwischen MBT und SGT beträgt für Kohat 75±5 km und für Potwar zwischen MBT und MFT 65±5 km. Sowohl Kohat und Potwar haben trotz ihrer unterschiedlichen räumlichen Ausdehnung (70 km Kohat und 150 km Potwar) eine vergleichbare Verkürzung erfahren. Zusammenfassend lässt sich sagen, dass diese Studie aufzeigt, wie die Verformung zwischen den einzelnen Strukturen in den letzten ~15 Ma, verursacht durch unterschiedliche Deformationsausbreitung, gesprungen ist und damit für die unterschiedlichen spezifischen Struktur-Stile und durchbrechende Deformationssequenzen in Kohat und Potwar verantwortlich ist. KW - Himalaya KW - folds KW - faults KW - décollement KW - exhumation KW - Himalaja KW - Falten KW - Störungen KW - Abschiebungshorizonte KW - Exhumierung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-440775 ER -