TY - THES A1 - Kröner, Dominik T1 - Analysis and control of light-induced processes in molecules: Electron and nuclear quantum dynamics for aspects of stereoisomerism and spectroscopy T1 - Analyse und Kontrolle lichtinduzierter Prozesse in Molekülen: Elektronen- und Kernquantendynamik für Aspekte der Stereoisomerie und Spektroskopie N2 - The habilitation thesis covers theoretical investigations on light-induced processes in molecules. The study is focussed on changes of the molecular electronic structure and geometry, caused either by photoexcitation in the event of a spectroscopic analysis, or by a selective control with shaped laser pulses. The applied and developed methods are predominantly based on quantum chemistry as well as on electron and nuclear quantum dynamics, and in parts on molecular dynamics. The studied scientific problems deal with stereoisomerism and the question of how to either switch or distinguish chiral molecules using laser pulses, and with the essentials for the simulation of the spectroscopic response of biochromophores, in order to unravel their photophysics. The accomplished findings not only explain experimental results and extend existing approaches, but also contribute significantly to the basic understanding of the investigated light-driven molecular processes. The main achievements can be divided in three parts: First, a quantum theory for an enantio- and diastereoselective or, in general, stereoselective laser pulse control was developed and successfully applied to influence the chirality of molecular switches. The proposed axially chiral molecules possess different numbers of "switchable" stable chiral conformations, with one particular switch featuring even a true achiral "off"-state which allows to enantioselectively "turn on" its chirality. Furthermore, surface mounted chiral molecular switches with several well-defined orientations were treated, where a newly devised highly flexible stochastic pulse optimization technique provides high stereoselectivity and efficiency at the same time, even for coupled chirality-changing degrees of freedom. Despite the model character of these studies, the proposed types of chiral molecular switches and, all the more, the developed basic concepts are generally applicable to design laser pulse controlled catalysts for asymmetric synthesis, or to achieve selective changes in the chirality of liquid crystals or in chiroptical nanodevices, implementable in information processing or as data storage. Second, laser-driven electron wavepacket dynamics based on ab initio calculations, namely time-dependent configuration interaction, was extended by the explicit inclusion of magnetic field-magnetic dipole interactions for the simulation of the qualitative and quantitative distinction of enantiomers in mass spectrometry by means of circularly polarized ultrashort laser pulses. The developed approach not only allows to explain the origin of the experimentally observed influence of the pulse duration on the detected circular dichroism in the ion yield, but also to predict laser pulse parameters for an optimal distinction of enantiomers by ultrashort shaped laser pulses. Moreover, these investigations in combination with the previous ones provide a fundamental understanding of the relevance of electric and magnetic interactions between linearly or non-linearly polarized laser pulses and (pro-)chiral molecules for either control by enantioselective excitation or distinction by enantiospecific excitation. Third, for selected light-sensitive biological systems of central importance, like e.g. antenna complexes of photosynthesis, simulations of processes which take place during and after photoexcitation of their chromophores were performed, in order to explain experimental (spectroscopic) findings as well as to understand the underlying photophysical and photochemical principles. In particular, aspects of normal mode mixing due to geometrical changes upon photoexcitation and their impact on (time-dependent) vibronic and resonance Raman spectra, as well as on intramolecular energy redistribution were addressed. In order to explain unresolved experimental findings, a simulation program for the calculation of vibronic and resonance Raman spectra, accounting for changes in both vibrational frequencies and normal modes, was created based on a time-dependent formalism. In addition, the influence of the biochemical environment on the electronic structure of the chromophores was studied by electrostatic interactions and mechanical embedding using hybrid quantum-classical methods. Environmental effects were found to be of importance, in particular, for the excitonic coupling of chromophores in light-harvesting complex II. Although the simulations for such highly complex systems are still restricted by various approximations, the improved approaches and obtained results have proven to be important contributions for a better understanding of light-induced processes in biosystems which also adds to efforts of their artificial reproduction. N2 - Die Habilitationsschrift behandelt theoretische Untersuchungen von durch Licht ausgelösten Prozessen in Molekülen. Der Schwerpunkt liegt dabei auf Veränderungen in der Elektronenstruktur und der Geometrie der Moleküle, die durch Bestrahlung mit Licht entweder bei einer spektroskopischen Untersuchung oder bei gezielter Kontrolle durch geformte Laserpulse herbeigeführt werden. Um die dabei auftretende Elektronen- und Kerndynamik zu simulieren, wurden vornehmlich quantentheoretische Methoden eingesetzt und weiterentwickelt. Die wissenschaftlichen Fragestellungen beschäftigen sich mit dem gezielten Verändern und dem Erkennen der räumlichen Struktur von Molekülen ohne Drehspiegelachse, der sog. molekularen Chiralität, sowie mit durch Licht eingeleiteten Prozessen in biologisch relevanten Pigmenten auf sehr kurzen Zeitskalen. Die entwickelten Ansätze und gewonnenen Erkenntnisse lassen sich drei Haupterfolge unterteilen: Erstens gelang die Entwicklung einer generellen Kontrolltheorie für das Ein- und Umschalten von molekularer Chiralität mit geformten Laserpulsen. Dabei wird die räumliche Struktur der vorgeschlagenen molekularen Schalter zwischen ihren stabilen sog. stereoisomeren Formen selektiv geändert, was sich auf ihre optischen und chemischen Eigenschaften auswirkt. Für komplexere Bedingungen, wie z.B. auf einer Oberfläche verankerten molekularen Schaltern verschiedener Orientierung, wurde eine neue Pulsoptimierungsmethode basierend auf Wahrscheinlichkeiten und Statistik entwickelt. Solche laserpulskontrollierten chiralen molekularen Schalter hofft man u.a. in der Nanotechnologie zum Einsatz zu bringen, wo sie z.B. als Informationsspeicher dienen könnten. Zweitens konnte geklärt werden, welche die wesentlichen Einflüsse sind, die das Erkennen von sog. Enantiomeren, das sind spiegelbildliche Moleküle von entgegengesetzter Chiralität, nach Ionisierung durch ultrakurze zirkular polarisierte Laserpulse ermöglichen. Diese Form des sog. Zirkulardichroismus in der Ionenausbeute erlaubt die quantitative und qualitative Unterscheidung von Enantiomeren in der Massenspektrometrie. Durch Simulation der Elektronendynamik während der Laseranregung konnte u.a. erstmals gezeigt werden, dass neben der Zirkularpolarisation der Laserpulse vor allem die schwachen magnetischen Wechselwirkungen für die Unterscheidung entscheidend sind. Drittens wurden die Spektren von in der Natur vorkommenden Pigmenten simuliert, welche u.a. an wichtigen biologischen Funktionen, wie dem Sammeln von Sonnenenergie für die Photosynthese, beteiligt sind. Die Lichtanregung führt dabei zu einer Veränderung der Elektronenstruktur und Geometrie der Pigmente, wobei letzteres wichtige Konsequenzen für die Verteilung der Energie auf die spektroskopisch beobachteten Molekülschwingungen mit sich bringen. Auch der wichtige Einfluss der biochemischen Umgebung auf die Elektronenstruktur der Pigmente bzw. den Energietransfer zwischen solchen wurde untersucht. Neben der Klärung experimenteller Ergebnisse ermöglichen die Untersuchungen neue Einblicke in die fundamentalen Prozesse kurz nach der Lichtanregung -- Erkenntnisse, die auch für die technische Nachahmung der biologischen Funktionen von Bedeutung sein können. KW - Elektronendynamik KW - chirale Schalter KW - chirale Erkennung KW - Biochromophore KW - Laserpulskontrolle KW - electron dynamics KW - chiral switches KW - chiral recognition KW - biochromophores KW - laser pulse control Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-70477 ER - TY - THES A1 - Titirici, Maria-Magdalena T1 - Hydrothermal carbonisation T1 - Hydrothermale Karbonisierung BT - A sustainable alternative to versatile carbon materials BT - Eine nachhaltige Alternative zu Kohle N2 - The world’s appetite for energy is producing growing quantities of CO2, a pollutant that contributes to the warming of the planet and which currently cannot be removed or stored in any significant way. Other natural reserves are also being devoured at alarming rates and current assessments suggest that we will need to identify alternative sources in the near future. With the aid of materials chemistry it should be possible to create a world in which energy use needs not be limited and where usable energy can be produced and stored wherever it is needed, where we can minimize and remediate emissions as new consumer products are created, whilst healing the planet and preventing further disruptive and harmful depletion of valuable mineral assets. In achieving these aims, the creation of new and very importantly greener industries and new sustainable pathways are crucial. In all of the aforementioned applications, new materials based on carbon, ideally produced via inexpensive, low energy consumption methods, using renewable resources as precursors, with flexible morphologies, pore structures and functionalities, are increasingly viewed as ideal candidates to fulfill these goals. The resulting materials should be a feasible solution for the efficient storage of energy and gases. At the end of life, such materials ideally must act to improve soil quality and to act as potential CO2 storage sinks. This is exactly the subject of this habilitation thesis: an alternative technology to produce carbon materials from biomass in water using low carbonisation temperatures and self-generated pressures. This technology is called hydrothermal carbonisation. It has been developed during the past five years by a group of young and talented researchers working under the supervision of Dr. Titirici at the Max-Planck Institute of Colloids and Interfaces and it is now a well-recognised methodology to produce carbon materials with important application in our daily lives. These applications include electrodes for portable electronic devices, filters for water purification, catalysts for the production of important chemicals as well as drug delivery systems and sensors. N2 - Der stets wachsende globale Energiebedarf führt zu immer weiter zunehmenden Emissionen von Kohlenstoffdioxid, einem umweltschädlichen Gas, das als eines der Hauptprobleme im weltweiten Klimawandel darstellt. Bislang ist es jedoch nicht möglich, dieses Kohlenstoffdioxid in sinnvoller Weise zu verwerten oder einzulagern. Zudem existieren weitere Probleme in der globalen Energieversorgung, da viele natürlich vorkommende Rohstoffe sehr schnell ausgebeutet werden, so dass in naher Zukunft dringend alternative Energiequellen gefunden werden müssen, um den aktuellen Problemen zu begegnen. Der Wissenschaftszweig der Materialchemie zielt in diesem Zusammenhang darauf ab, dazu beizutragen, die bestehende Energieinfrastruktur nachhaltig zu verändern. Dabei stehen verschiedene Aspekte im Vordergrund: Energie sollte in allen gewünschten Mengen jederzeit verfügbar und auch speicherbar sein. Zudem sollte ihre Erzeugung ohne umweltschädliche Abfallprodukte ablaufen. Tiefgreifende Eingriffe in die Umwelt, v.a. durch den übermäßigen Abbau von Rohstoffen, sollte nicht mehr erforderlich sein. Auf diese Weise können die Folgen des bisherigen Klimawandels eingedämmt werden und neue Schäden an der Umwelt vermieden werden. Neue, grüne Industrie- und Energieprozesse schützen hier also nachhaltig den Planeten. Bei der Forschung an nachhaltigen Formen der Energieversorgung beschäftigen sich Materialchemiker in mannigfaltiger Weise mit Kohlenstoffmaterialien. Diese sollten idealerweise kostengünstig und ohne hohen Energiebedarf produziert werden können. Am vielversprechendsten sind Materialien, die eine flexibel gestaltbare Morphologie besitzen, d.h. die besondere strukturelle Eigenschaften besitzen, wie z.B. Porosität oder chemisch veränderte und damit funktionale Oberflächen. Idealerweise sollten solche neu entwickelten Materialien nicht nur als Speicher von Energie oder Energieträgern dienen, sondern auch nach ihrer Lebensdauer als funktionales Material zur Verbesserung der Bodenqualität eingesetzt werden können und dort noch weiter als potentielle Senke für Kohlenstoffdioxid dienen können. Die zuvor beschriebenen Themen und Probleme stellen den Gegenstand der vorliegenden Habilitationsschrift dar: die Entwicklung einer alternativen Methode zur Herstellung von Kohlenstoffmaterialien aus Biomasse in Wasser bei geringen Temperaturen. Dabei handelt es sich um die sogenannte hydrothermale Karbonisierung, die in den letzten fünf Jahren von einer Gruppe junger, talentierter Wissenschaftler unter der Anleitung von Frau Dr. Titirici am Max-Planck-Institut für Kolloid- und Grenzflächenforschung erarbeitet und weiterentwickelt wurde zu einer heutzutage anerkannten und verbreiteten Methode. Zudem wurden die über diesen Weg gewonnenen Materialien erfolgreich in zahlreichen, für den Alltag wichtigen Anwendungen eingesetzt, so z.B. als Elektroden in tragbaren elektronischen Geräten, als Filtermaterialien für die Aufreinigung kontaminierten Wassers, als Katalysatoren für wichtige chemische Reaktionen, als Trägermaterial für Arzneimittel und als Sensoren. KW - Hydrothermale Karbonisierung KW - Kohlenstoffe auf Biomasse-Basis KW - hydrothermal carbonization KW - biomass-derived carbons Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-66885 ER - TY - THES A1 - Börner, Hans Gerhard T1 - Exploiting self-organization and functionality of peptides for polymer science T1 - Peptide im Dienste der Polymerwissenschaften : Kontrolle der Selbstorganisation und der Funktionalität N2 - Controlling interactions in synthetic polymers as precisely as in proteins would have a strong impact on polymer science. Advanced structural and functional control can lead to rational design of, integrated nano- and microstructures. To achieve this, properties of monomer sequence defined oligopeptides were exploited. Through their incorporation as monodisperse segments into synthetic polymers we learned in recent four years how to program the structure formation of polymers, to adjust and exploit interactions in such polymers, to control inorganic-organic interfaces in fiber composites and induce structure in Biomacromolecules like DNA for biomedical applications. N2 - Die Kontrolle von Wechselwirkungen in synthetischen Polymersystemen mit vergleichbarer Präzision wie in Polypeptiden und Proteinen hätte einen dramatischen Einfluss auf die Möglichkeiten in den Polymer- und Materialwissenschaften. Um dies zu erreichen, werden im Rahmen dieser Arbeit Eigenschaften von Oligopeptiden mit definierter Monomersequenz ausgenutzt. Die Integration dieser monodispersen Biosegmente in synthetische Polymere erlaubt z. B. den Aufbau von Peptid-block-Polymer Copolymeren. In solchen sogenannten Peptid-Polymer-Konjugaten sind die Funktionalitäten, die Sekundärwechselwirkungen und die biologische Aktivität des Peptidsegments präzise programmierbar. In den vergangen vier Jahren konnte demonstriert werden, wie in Biokonjugatsystemen die Mikrostrukturbildung gesteuert werden kann, wie definierte Wechselwirkungen in diesen Systemen programmiert und ausgenutzt werden können und wie Grenzflächen zwischen anorganischen und organischen Komponenten in Faserkompositmaterialien kontrolliert werden können. Desweiteren konnten Peptid-Polymer-Konjugate verwendet werden, um für biomedizinische Anwendungen DNS gezielt zu komprimieren oder Zelladhäsion auf Oberflächen zu steuern. KW - Peptid-Polymer-Konjugate KW - Biokonjugate KW - Selbstorganisation KW - peptide-polymer conjugate KW - bioconjugate KW - self-assembly Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-29066 ER - TY - THES A1 - Schlaad, Helmut T1 - Polymer self-assembly : adding complexity to mesostructures of diblock copolymers by specific interactions N2 - In dieser Arbeit wurde die Rolle selektiver, nicht-kovalenter Wechselwirkungen bei der Selbstorganisation von Diblockcopolymeren untersucht. Durch Einführung elektrostatischer, dipolarer Wechselwirkungen oder Wasserstoffbrückenbindungen sollte es gelingen, komplexe Mesostrukturen zu erzeugen und die Ordnung vom Nanometerbereich auf größere Längenskalen auszuweiten. Diese Arbeit ist im Rahmen von Biomimetik zu sehen, da sie Konzepte der synthetischen Polymer- und Kolloidchemie und Grundprinzipien der Strukturbildung in supramolekularen und biologischen Systemen verbindet. Folgende Copolymersysteme wurden untersucht: (i) Blockionomere, (ii) Blockcopolymere mit chelatisierenden Acetoacetoxyeinheiten und (iii) Polypeptid-Blockcopolymere. N2 - In this work, the basic principles of self-organization of diblock copolymers having the in¬herent property of selective or specific non-covalent binding were examined. By the introduction of electrostatic, dipole–dipole, or hydrogen bonding interactions, it was hoped to add complexity to the self-assembled mesostructures and to extend the level of ordering from the nanometer to a larger length scale. This work may be seen in the framework of biomimetics, as it combines features of synthetic polymer and colloid chemistry with basic concepts of structure formation applying in supramolecular and biological systems. The copolymer systems under study were (i) block ionomers, (ii) block copolymers with acetoacetoxy chelating units, and (iii) polypeptide block copolymers. T2 - Polymer self-assembly : adding complexity to mesostructures of diblock copolymers by specific interactions KW - block copolymer KW - polypeptide KW - controlled polymerization KW - self-assembly KW - specific interactions KW - micelle KW - vesicle KW - solid-state structure KW - colloids KW - Blockcopolymer KW - Polypeptid KW - kontrollierte Polymerisation KW - Selbstorganisation KW - spezifische Wechselwirkungen KW - Mizelle KW - Vesikel KW - Festkörperstruktur KW - Kol Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001824 ER -