TY - JOUR A1 - Borchert, Manuela A1 - Wilke, Max A1 - Schmidt, Christian A1 - Rickers, Karen T1 - Rb and Sr partitioning between haplogranitic melts and aqueous solutions N2 - Rubidium and strontium partitioning experiments between haplogranitic melts and aqueous fluids (water or 1.16- 3.56 m (NaCl + KCl) +/- HCl) were conducted at 750-950 degrees C and 0.2-1.4 GPa to investigate the effects of melt and fluid composition, pressure, and temperature. In addition, we studied if the applied technique (rapid and slow quench, and in-situ determination of trace element concentration in the fluid) has a bearing on the obtained data. There is good agreement of the data from different techniques for chloridic solutions, whereas back reactions between fluid and Melt upon cooling have a significant effect on results from the experiments with water. The Rb fluid-melt partition coefficient shows no recognizable dependence on melt composition and temperature. For chloridic Solutions, it is similar to 0.4, independent of pressure. In experiments with water, it is one to two orders of magnitude lower and increases with pressure. The strontium fluid-melt partition coefficient does not depend on temperature. It increases slightly with pressure in Cl free experiments. In chloridic fluids, there is a sharp increase in the Sr partition coefficient with the alumina saturation index (ASI) from 0.003 at an ASI of 0.8 to a maximum of 0.3 at an ASI of 1.05. At higher ASI, it decreases slightly to 0.2 at an ASI of 1.6. It is one to two orders of magnitude higher in chloridic fluids compared to those found in H2O experiments. The Rb/Sr ratio in non-chloridic solutions in equilibrium with metaluminous melts increases with pressure, whereas the Rb/Sr ratio in chloridic fluids is independent of pressure and decreases with fluid salinity. The obtained fluid-melt partition coefficients are in good agreement with data from natural cogenetic fluid and melt inclusions. Numerical modeling shows that although the Rb/Sr ratio in the residual melt is particularly sensitive to the degree of fractional crystallization, exsolution of a fluid phase, and associated fluid-melt partitioning is not a significant factor controlling Rb and Sr concentrations in the residual melt during crystallization of most granitoids. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/00167037 U6 - https://doi.org/10.1016/j.gca.2009.10.033 SN - 0016-7037 ER - TY - JOUR A1 - Rusu, Viorel Marin A1 - Ng, C. H. A1 - Wilke, Max A1 - Tiersch, Brigitte A1 - Fratzl, Peter A1 - Peter, Martin G. T1 - Size-controlled hydroxyapatite nanoparticles as self-organized organic-in organic composite materials N2 - This paper presents some results concerning the size-controlled hydroxyapatite nanoparticles obtained in aqueous media in a biopolymer matrix from soluble precursors salts. Taking the inspiration from nature, where composite materials made of a polymer matrix and inorganic fillers are often found, e.g. bone, shell of crustaceans, shell of eggs, etc., the feasibility on making composite materials containing chitosan and nanosized hydroxyapatite was investigated. A stepwise co-precipitation approach was used to obtain different types of composites by means of different ratio between components. The synthesis of hydroxyapatite was carried out in the chitosan matrix from calcium chloride and sodium dihydrogenphosphate in alkaline solutions at moderate pH of 10-11 for 24 h. Our research is focused on studying and understanding the structure of this class of composites, aiming at the development of novel materials, controlled at the nanolevel scale. The X-ray diffraction technique was employed in order to study the kinetic of hydroxyapatite formation in the chitosan matrix as well as to determine the HAp crystallite sizes in the composite samples. The hydroxyapatite synthesized using this route was found to be nano-sized (15-50nm). Moreover, applying an original approach to analyze the (002) XRD diffraction peak profile of hydroxyapatite by using a sum of two Gauss functions, the bimodal distribution of nanosized hydroxyapatite within the chitosan matrix was revealed. Two types of size distribution domains such as cluster-like (between 200 and 400 nm), which are the habitat of "small" hydroxyapatite nanocrystallites and scattered-like, which are the habitat of "large" hydroxyapatite nanocrystallites was probed by TEM and CSLM. The structural features of composites suggest that self-assembly processes might be involved. The composites contain nanosized hydroxyapatite with structural features close to those of biological apatites that make them attractive for bone tissue engineering applications. (c) 2005 Elsevier Ltd. All rights reserved Y1 - 2005 SN - 0142-9612 ER -