TY - GEN A1 - Scholz, Carolin A1 - Voigt, Christian C. T1 - Diet analysis of bats killed at wind turbines suggests large-scale losses of trophic interactions T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Agricultural practice has led to landscape simplification and biodiversity decline, yet recently, energy-producing infrastructures, such as wind turbines, have been added to these simplified agroecosystems, turning them into multi-functional energy-agroecosystems. Here, we studied the trophic interactions of bats killed at wind turbines using a DNA metabarcoding approach to shed light on how turbine-related bat fatalities may possibly affect local habitats. Specifically, we identified insect DNA in the stomachs of common noctule bats (Nyctalus noctula) killed by wind turbines in Germany to infer in which habitats these bats hunted. Common noctule bats consumed a wide variety of insects from different habitats, ranging from aquatic to terrestrial ecosystems (e.g., wetlands, farmland, forests, and grasslands). Agricultural and silvicultural pest insects made up about 20% of insect species consumed by the studied bats. Our study suggests that the potential damage of wind energy production goes beyond the loss of bats and the decline of bat populations. Bat fatalities at wind turbines may lead to the loss of trophic interactions and ecosystem services provided by bats, which may add to the functional simplification and impaired crop production, respectively, in multi-functional ecosystems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1358 KW - bat fatalities KW - biodiversity decline KW - food web KW - green-green dilemma KW - renewable energy KW - wind energy production KW - wind energy-biodiversity KW - conflict Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-591568 SN - 1866-8372 IS - 7 ER - TY - JOUR A1 - Ollier, Lana A1 - Metz, Florence A1 - Nuñez-Jimenez, Alejandro A1 - Späth, Leonhard A1 - Lilliestam, Johan T1 - The European 2030 climate and energy package BT - do domestic strategy adaptations precede EU policy change? JF - Policy sciences N2 - The European Union’s 2030 climate and energy package introduced fundamental changes compared to its 2020 predecessor. These changes included a stronger focus on the internal market and an increased emphasis on technology-neutral decarbonization while simultaneously de-emphasizing the renewables target. This article investigates whether changes in domestic policy strategies of leading member states in European climate policy preceded the observed changes in EU policy. Disaggregating strategic change into changes in different elements (goals, objectives, instrumental logic), allows us to go beyond analyzing the relative prioritization of different goals, and to analyze how policy requirements for reaching those goals were dynamically redefined over time. To this end, we introduce a new method, which based on insights from social network analysis, enables us to systematically trace those strategic chances. We find that shifts in national strategies of the investigated member states preceded the shift in EU policy. In particular, countries reframed their understanding of supply security, and pushed for the internal electricity market also as a security measure to balance fluctuating renewables. Hence, the increasing focus on markets and market integration in the European 2030 package echoed the increasingly central role of the internal market for electricity supply security in national strategies. These findings also highlight that countries dynamically redefined their goals relative to the different phases of the energy transition. KW - climate and energy policy KW - policy strategy KW - European Union KW - decarbonization KW - renewable energy Y1 - 2022 U6 - https://doi.org/10.1007/s11077-022-09447-5 SN - 0032-2687 SN - 1573-0891 VL - 55 IS - 1 SP - 161 EP - 184 PB - Springer Science+Business Media LLC CY - New York ER - TY - JOUR A1 - Scholz, Carolin A1 - Voigt, Christian C. T1 - Diet analysis of bats killed at wind turbines suggests large-scale losses of trophic interactions JF - Conservation science and practice N2 - Agricultural practice has led to landscape simplification and biodiversity decline, yet recently, energy-producing infrastructures, such as wind turbines, have been added to these simplified agroecosystems, turning them into multi-functional energy-agroecosystems. Here, we studied the trophic interactions of bats killed at wind turbines using a DNA metabarcoding approach to shed light on how turbine-related bat fatalities may possibly affect local habitats. Specifically, we identified insect DNA in the stomachs of common noctule bats (Nyctalus noctula) killed by wind turbines in Germany to infer in which habitats these bats hunted. Common noctule bats consumed a wide variety of insects from different habitats, ranging from aquatic to terrestrial ecosystems (e.g., wetlands, farmland, forests, and grasslands). Agricultural and silvicultural pest insects made up about 20% of insect species consumed by the studied bats. Our study suggests that the potential damage of wind energy production goes beyond the loss of bats and the decline of bat populations. Bat fatalities at wind turbines may lead to the loss of trophic interactions and ecosystem services provided by bats, which may add to the functional simplification and impaired crop production, respectively, in multi-functional ecosystems. KW - bat fatalities KW - biodiversity decline KW - food web KW - green-green dilemma KW - renewable energy KW - wind energy production KW - wind energy-biodiversity conflict Y1 - 2022 U6 - https://doi.org/10.1111/csp2.12744 SN - 2578-4854 VL - 4 IS - 7 PB - Wiley CY - Hoboken ER -