TY - THES A1 - Bastian, Philipp U. T1 - Core-shell upconversion nanoparticles - investigation of dopant intermixing and surface modification T1 - Kern-Schale Aufkonvertierende Nanopartikel — eine Untersuchung der Dotandenvermischung und Oberflächenmodifikation N2 - Frequency upconversion nanoparticles (UCNPs) are inorganic nanocrystals capable to up-convert incident photons of the near-infrared electromagnetic spectrum (NIR) into higher energy photons. These photons are re-emitted in the range of the visible (Vis) and even ultraviolet (UV) light. The frequency upconversion process (UC) is realized with nanocrystals doped with trivalent lanthanoid ions (Ln(III)). The Ln(III) ions provide the electronic (excited) states forming a ladder-like electronic structure for the Ln(III) electrons in the nanocrystals. The absorption of at least two low energy photons by the nanoparticle and the subsequent energy transfer to one Ln(III) ion leads to the promotion of one Ln(III) electron into higher excited electronic states. One high energy photon will be emitted during the radiative relaxation of the electron in the excited state back into the electronic ground state of the Ln(III) ion. The excited state electron is the result of the previous absorption of at least two low energy photons. The UC process is very interesting in the biological/medical context. Biological samples (like organic tissue, blood, urine, and stool) absorb high-energy photons (UV and blue light) more strongly than low-energy photons (red and NIR light). Thanks to a naturally occurring optical window, NIR light can penetrate deeper than UV light into biological samples. Hence, UCNPs in bio-samples can be excited by NIR light. This possibility opens a pathway for in vitro as well as in vivo applications, like optical imaging by cell labeling or staining of specific organic tissue. Furthermore, early detection and diagnosis of diseases by predictive and diagnostic biomarkers can be realized with bio-recognition elements being labeled to the UCNPs. Additionally, "theranostic" becomes possible, in which the identification and the treatment of a disease are tackled simultaneously. For this to succeed, certain parameters for the UCNPs must be met: high upconversion efficiency, high photoluminescence quantum yield, dispersibility, and dispersion stability in aqueous media, as well as availability of functional groups to introduce fast and easy bio-recognition elements. The UCNPs used in this work were prepared with a solvothermal decomposition synthesis yielding in particles with NaYF4 or NaGdF4 as host lattice. They have been doped with the Ln(III) ions Yb3+ and Er3+, which is only one possible upconversion pair. Their upconversion efficiency and photoluminescence quantum yield were improved by adding a passivating shell to reduce surface quenching. However, the brightness of core-shell UCNPs stays behind the expectations compared to their bulk material (being at least μm-sized particles). The core-shell structures are not clearly separated from each other, which is a topic in literature. Instead, there is a transition layer between the core and the shell structure, which relates to the migration of the dopants within the host lattice during the synthesis. The ion migration has been examined by time-resolved laser spectroscopy and the interlanthanoid resonance energy transfer (LRET) in the two different host lattices from above. The results are presented in two publications, which dealt with core-shell-shell structured nanoparticles. The core is doped with the LRET-acceptor (either Nd3+ or Pr3+). The intermediate shell serves as an insulation shell of pure host lattice material, whose shell thickness has been varied within one set of samples having the same composition, so that the spatial separation of LRET-acceptor and -donor changes. The outer shell with the same host lattice is doped with the LRET-donor (Eu3+). The effect of the increasing insulation shell thickness is significant, although the LRET cannot be suppressed completely. Next to the Ln(III) migration within a host lattice, various phase transfer reactions were investigated in order to subsequently perform surface modifications for bioapplications. One result out of this research has been published using a promising ligand, that equips the UCNP with bio-modifiable groups and has good potential for bio-medical applications. This particular ligand mimics natural occurring mechanisms of mussel protein adhesion and of blood coagulation, which is why the UCNPs are encapsulated very effectively. At the same time, bio-functional groups are introduced. In a proof-of-concept, the encapsulated UCNP has been coupled successfully with a dye (which is representative for a biomarker) and the system’s photoluminescence properties have been investigated. N2 - Frequenzaufkonvertierende Nanopartikel (UCNP) sind anorganische Nanokristalle. Sie können einfallende Photonen des nah-infraroten elektromagnetischen Spektrums (NIR) in höher energetische Photonen im Bereich des sichtbaren Lichtes und sogar des ultravioletten Lichtes (UV) umwandeln und wieder emittieren. Dieser Frequenzaufkonversionsprozess (UC) basiert auf Nanokristallen, die mit dreiwertigen Lanthanoid-Ionen (Ln(III)) dotiert sind. Die elektronisch angeregten Zustände der Ln(III)-Ionen stehen zur Verfügung, mit deren Hilfe Elektronen über eine leiterartige elektronische Struktur der elektronischen Zustände der Ln(III)-Ionen in höher angeregte Zustände gelangen können. Zuvor müssen mindestens zwei niederenergetische Photonen vom Nanopartikel absorbiert werden. Die absorbierte Energie muss über einen oder mehrere Energieübertragungen das gleiche Ln(III)-Ion erreichen um beim strahlenden Relaxieren des Elektrones im angeregten Zustand zurück in den elektronischen Grundzustand des Ln(III)-Ions ein höherenergetisches Photon zu emittieren. Der Frequenzaufkonversionsprozess ist sehr interessant für die Anwendung im biologisch/medizinischen Bereich. Biologische Proben (z.B. organisches Gewebe, Blut, Urin und Stuhl) absorbieren höherenergetische Photonen (UV) stärker als niederenergetische Photonen (NIR). Dank eines natürlich vorkommenden optischen Fensters in biologischen Proben kann NIR-Licht tiefer als UV-Licht eindringen, sodass die UCNPs in biologischen Proben mit NIR-Licht angeregt werden können. Dies ermöglicht in vitro als auch in vivo Anwendungen, z.B. für die optische Bildgebung durch Markieren von Zellen oder durch Einfärben von bestimmten Bereichen organischer Gewebe. Frühzeitige Erkennung von Krankheiten kann durch prädiktive und diagnostisch geeignete Biomarker, die mit Erkennungselementen an den UCNPs detektiert werden, realisiert werden. Demnach ist „Theranostic“ ein mögliches Szenario, das die Identifikation und die gleichzeitige Behandlung einer Krankheit ermöglichen könnte. Um diese Vision zu realisieren, müssen die UCNPs bestimmte Parameter erfüllen: Eine hohe Aufkonversionseffizienz, eine hohe Photolumineszenzquantenausbeute, eine gute Dispergierbarkeit und Stabilität der Dispersion in wässrigen Medien, sowie die Verfügbarkeit von funktionellen Gruppen, um schnell und einfach biologische Erkennungselemente daran zu koppeln. Die UCNPs dieser Arbeit wurden mit Hilfe einer solvothermalen Zersetzungsreaktion durchgeführt. Die Nanopartikel bestanden aus unterschiedlichen Wirtsgittern, entweder aus NaYF4 oder NaGdF4. Die Wirtsgitter wurden mit den Ln(III)-Ionen Yb3+ und Er3+ dotiert. Die Aufkonversionseffizienz, somit auch deren Quantenausbeute, konnte mit einer passivierenden Schale verbessert werden. Dennoch leuchten die Kern-Schale-UCNPs schlechter als es im Vergleich mit μm-großen Partikeln zu erwarten wäre. Die Kern-Schale-Strukturen gehen ineinander über und sind nicht klar voneinander getrennt. Zwischen dem Kern und der Schale existiert eine Übergangsregion, die mit der Wanderung der Ionen des Wirtsgitters und den dotierten Ln(III)-Ionen einhergeht. Diese Beobachtung wird auch in der Literatur diskutiert. Die Ionenwanderung wurde mit Hilfe von zeitaufgelöster Laserspektroskopie und dem Interlanthanoidenergietransfer (LRET) in den beiden erwähnten Wirtsgittern untersucht. Die Ergebnisse sind in zwei Publikationen veröffentlicht, die auf Kern-Schale-Schale-Strukturen basieren. Der Kern ist mit dem LRET-Akzeptor dotiert (Nd3+ oder Pr3+). Die Zwischenschale besteht aus dem gleichen Wirtsgitter ohne Dotierstoffe und dient als Isolationsschale, deren Schalendicke innerhalb einer Experimentierreihe variiert wurde, um eine räumliche Trennung von LRET-Akzeptor und -Donor zu schaffen. Die äußere Schale, aus dem gleichen Wirtsgitter, ist mit dem LRET-donor (Eu3+) dotiert. Der Effekt der wachsenden Isolationsschalendicke ist signifikant. Aber es ist nicht möglich gewesen, den Energietransfer vom Donor auf den Akzeptor komplett zu unterbinden. Neben der Untersuchung der Wanderung von Ln(III)-Ionen in einem Wirtsgitter wurden verschiedene Phasentransferreaktionen durchgeführt, um anschließende Oberflächenmodifikationen anzuwenden, damit die Anwendungen der UCNPs im biologischen Kontext prinzipiell demonstriert werden kann. Ein Ergebnis mit einem sehr vielversprechenden Liganden für die bio-medizinische Anwendung wurde in einer Publikation veröffentlicht. Dieser Ligand imitiert natürliche Mechanismen von Muschelproteinen und von Blutkoagulation, sodass die untersuchten Nanopartikel sehr effektiv eingekapselt werden. Gleichzeitig sind funktionelle Gruppen zur Bio-Funktionalisierung vorhanden. In einer Machbarkeitsstudie wurde der eingekapselte UCNP erfolgreich mit einem Farbstoff (der durch einen Biomarker ersetzt werden kann) gekoppelt und die Photolumineszenzeigenschaften des Systems untersucht. KW - upconversion KW - Aufkonversion KW - Nanopartikel KW - nanoparticle KW - bio-modification KW - Biomodification KW - Ionenmigration KW - ion migration KW - surface modification KW - Oberflächenmodifizierung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-551607 ER - TY - THES A1 - Nie, Yan T1 - Modulating keratinocyte and induced pluripotent stem cell behavior by microenvironment design or temperature control N2 - Under the in vivo condition, a cell is continually interacting with its surrounding microenvironment, which is composed of its neighboring cells and the extracellular matrix (ECM). These components generate and transmit the microenvironmental signals to regulate the fate and function of the target cells. Except the signals from the microenvironment, stimuli from the ambient environment, such as temperature changes, also play an important in modulating the cell behaviors, which are considered as regulators from the macroenvironment. In this regard, recapitulation of these environmental factors to steer cell function will be of crucial importance for therapeutic purposes and tissue regeneration. Although the role of a variety of environmental factors has been evaluated, it is still challenging to identify and provide the appropriate factors, which are required for optimizing the survival of cells and for ensuring effective cell functions. Thus, in vitro recreating the environmental factors that are present in the extracellular environment would help to understand the mechanism of how cells sense and process those environmental signals. In this context, this thesis is aimed to harness these environmental parameters to guide cell responses. Here, human induced pluripotent stem cells (hiPSCs) and human keratinocytes (KTCs), HaCaT cells, were used to investigate the impact of signals from the microenvironment or stimuli from the macroenvironment. Firstly, polydopamine (PDA) or chitosan (CS) modifications were applied to generate different substrate surfaces for hiPSCs and KTCs (Chapter 4 to Chapter 6). Our results showed that the PDA modification was efficient to increase the cell-substrate adhesion and consequently promoted cell spreading. While CS modification was able to decrease the cell-substrate adhesion and enhance the cell-cell interaction, which enabled the morphology shift from monolayered cells to multicellular spheroids. The quantitative result was acquired using the atomic force microscopy (AFM)-based single-cell force spectroscopy. The balance between the cell-substrate and cell-cell adhesion yielded a net force, which determined the preference of the cell to adhere to its neighboring cells or to the substrate. The difference in the adhesive behaviors further affected the cellular function, such as the proliferation and differentiation potential of both hiPSCs and HaCaT cells. Next, the cyclic temperature changes (ΔT) were selected here to study the influence of macroenvironmental stimuli on hiPSCs and KTCs (Chapter 7 and Chapter 8). The macroenvironmental temperature ranging from 10.0 ± 0.1 °C to 37.0 ± 0.1 °C was achieved using a thermal chamber equipped with a temperature controller. This temperature range was selected to explore the responses of hiPSCs to the extreme environments, while a temperature variation between 25.0 ± 0.1 °C and 37.0 ± 0.1 °C was applied to mimic the ambient temperature variations experienced by the skin epithelial KTCs. The ΔT led to cell stiffening in both hiPSCs and HaCaT cells in a cytoskeleton-dependent manner, which was measured by AFM. Specifically, in hiPSCs, the cell stiffening was resulted from the rearrangement of the actin skeleton; in HaCaT cells, was due to the difference of the Keratin (KRT) filaments. Except for inducing cell hardening, ΔT also caused differences in the protein expression profiles in hiPSCs or HaCaT cells, compared to those without ΔT treatment, which might be attributed to the alterations in their cytoskeleton structures. To sum up, the results of the thesis demonstrated how individual factors from the micro-/macro-environment can be harnessed to modulate the behaviors of hiPSCs and HaCaT cells. Engineering the microenvironmental cues using surface modification and exploiting the macroenvironmental stimuli through temperature control were identified as precise and potent approaches to steer hiPSC and HaCaT cell behaviors. The application of AFM served as a non-invasive and real-time monitoring platform to trace the change in cell topography and mechanics induced by the environmental signals, which provide novel insights into the cell-environment interactions. N2 - In vivo interagiert eine Zelle ständig mit ihrer Mikroumgebung, die aus ihren Nachbarzellen und der extrazellulären Matrix (ECM) besteht. Diese Komponenten erzeugen und übertragen die Mikroumgebungssignale, um das Schicksal und die Funktion der Zielzellen zu regulieren. Außer den Signalen aus der Mikroumgebung spielen auch Reize aus der Makroumgebung, wie Temperaturänderungen, eine wichtige Rolle bei der Modulation des Zellverhaltens. In dieser Hinsicht ist es wichtig, diese Umweltfaktoren zur Steuerung der Zellfunktion für therapeutische Zwecke und die Geweberegeneration zu rekapitulieren. Es stellt sich immer noch eine Herausforderung, geeignete Faktoren zu identifizieren und bereitzustellen, die zur Optimierung des Überlebens von Zellen und zur Sicherstellung effektiver Zellfunktionen erforderlich sind. Daher würde die in vitro-Nachbildung der Umweltfaktoren helfen, den Mechanismus zu verstehen, wie Zellen diese Umweltsignale wahrnehmen und verarbeiten. In diesem Zusammenhang zielt diese Dissertation darauf ab, diese externen Parameter zu nutzen, um Zellantworten zu steuern. Hier wurden humaninduzierte pluripotente Stammzellen (hiPSCs) und humane Keratinozyten (KTCs) wie HaCaT-Zellen verwendet, um den Einfluss von Signalen aus der Mikroumgebung oder Stimuli aus der Makroumgebung zu untersuchen. Zunächst wurden Modifikationen mit Polydopamin (PDA) oder Chitosan (CS) angewendet, um unterschiedliche Substratoberflächen für hiPSCs und KTCs zu erzeugen (Kapitel 4 bis Kapitel 6). Unsere Ergebnisse zeigten, dass die PDA-Modifikation die Zell-Substrat-Adhäsion erhöhte und folglich die Zellausbreitung förderte. Während die CS-Modifikation die Zell-Substrat-Adhäsion verringerte und die Zell-Zell-Interaktion verstärkte, verändeite sich die Morphologie von einschichtigen Zellen zu mehrzelligen Sphäroiden. Das quantitative Ergebnis wurde mittels Rasterkraftmikroskopie (AFM)-basierter Einzelzellkraftspektroskopie gewonnen. Das Gleichgewicht zwischen Zell-Substrat und Zell-Zell-Adhäsion ergab eine Nettokraft, die die Präferenz der Zelle bestimmt, an ihren Nachbarzellen oder am Substrat zu haften. Der Unterschied im Adhäsionsverhalten beeinflusste außerdem die Zellfunktion, wie das Proliferations- und Differenzierungspotential von hiPSCs und HaCaT-Zellen. Als nächstes wurden hier zyklische Temperaturänderungen (ΔT) ausgewählt, um den Einfluss von Stimuli aus der Makroumgebung auf hiPSCs und KTCs zu untersuchen (Kapitel 7 und Kapitel 8). Die Makroumgebungstemperatur im Bereich von 10,0 ± 0,1 °C bis 37,0 ± 0,1 °C wurde unter Verwendung einer mit einem Temperaturregler ausgestatteten Wärmekammer erreicht. Dieser Temperaturbereich wurde gewählt, um die Reaktion von hiPSCs auf extreme Umgebungen zu untersuchen, während eine Temperaturvariation zwischen 25,0 ± 0,1 ° C und 37,0 ± 0,1 ° C angewendet wurde, um die Temperaturänderungen nachzuahmen, die die Epithelzellen erfahren. Das ΔT führte zytoskelettabhängig zu einer Zellversteifung sowohl in hiPSCs als auch in HaCaT-Zellen, die mittels AFM gemessen wurde. Insbesondere bei hiPSCs resultierte die Zellversteifung aus der Neuordnung des Aktinskeletts; in HaCaT-Zellen, war auf den Unterschied der Keratin (KRT)-Filamente zurückzuführen. Abgesehen von der festgestellten Erhärtung der Zellen verursachte ΔT auch Unterschiede in den Proteinexpressionsprofilen in hiPSCs oder HaCaT-Zellen im Vergleich zu denen ohne ΔT-Behandlung. Dies könnte auf die Veränderungen in ihren Zytoskelettstrukturen zurückgeführt werden. Zusammenfassend zeigten die Ergebnisse, wie die drei Faktoren (PDA/CS-Modifikation und ΔT) aus der Mikro-/Makroumgebung genutzt werden können, um das Verhalten von hiPSCs und HaCaT-Zellen zu modulieren. Als präzise und wirksame Ansätze zur Steuerung des hiPSC- und HaCaT-Zellen-Verhaltens wurde das Engineering der Mikroumgebungssignale durch Oberflächenmodifikation und die Nutzung der Makroumgebungsreize durch Temperaturkontrolle identifiziert. Die Anwendung von AFM diente als nicht-invasive und Echtzeit-Überwachungsplattform, um die durch die Umweltsignale induzierten Veränderungen der Zelltopographie und -mechanik zu verfolgen, die neue Einblicke in die Zell-Umwelt-Interaktionen liefern. KW - human induced pluripotent stem cells KW - human keratinocytes KW - cell-environment interactions KW - surface modification KW - temperature variations KW - humaninduzierte pluripotente Stammzellen KW - humane Keratinozyten KW - Zell-Umwelt-Interaktionen KW - Oberflächenmodifikation KW - Temperaturänderungen Y1 - 2022 ER -