TY - JOUR A1 - Peng, Tao A1 - Zhu, Ganghua A1 - Dong, Yunpeng A1 - Zeng, Junjie A1 - Li, Wei A1 - Guo, Weiwei A1 - Chen, Yong A1 - Duan, Maoli A1 - Hocher, Berthold A1 - Xie, Dinghua T1 - BMP4: a possible key factor in differentiation of auditory neuron-like cells from bone-derived mesenchymal stromal cells JF - Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion N2 - Background: Previous studies have shown that BMP4 may play an important part in the development of auditory neurons (ANs), which are degenerated in sensorineural hearing loss. However, whether BMP4 can promote sensory fate specification from mesenchymal stromal cells (MSCs) is unknown so far. Methods: MSCs isolated from Sprague-Dawley (SD) rats were confirmed by expression of MSC markers using flow cytometry and adipogenesis/osteogenesis using differentiation assays. MSCs treated with a complex of neurotrophic factors (BMP4 group and non-BMP4 group) were induced into auditory neuron-like cells, then the differences between the two groups were analyzed in morphological observation, cell growth curve, qRT-PCR, and immunofluorescence. Results: Flow cytometric analysis showed that the isolated cells expressed typical MSC surface markers. After adipogenic and osteogenic induction, the cells were stained by oil red O and Alizarin Red. The neuronal induced cells were in the growth plateau and had special forms of neurons. In the presence of BMP4, the inner ear genes NF-M, Neurog1, GluR4, NeuroD, Calretinin, NeuN, Tau, and GATA3 were up-regulated in MSCs. Conclusions: MSCs have the capacity to differentiate into auditory neuron-like cells in vitro. As an effective inducer, BMP4 may play a key role in transdifferentiation. KW - differentiation KW - auditory neurons KW - BMP4 Y1 - 2015 U6 - https://doi.org/10.7754/Clin.Lab.2015.150217 SN - 1433-6510 VL - 61 IS - 9 SP - 1171 EP - 1178 PB - Clin Lab Publ., Verl. Klinisches Labor CY - Heidelberg ER - TY - THES A1 - Küster, Katrin T1 - Die funktionelle Bedeutung des Coxsackie- und Adenovirus Rezeptors (CAR) im kolorektalen Karzinom T1 - Functional role of the Coxsackie and Adenovirus Receptor (CAR) in colorectal carcinomas N2 - Der Coxsackie- und Adenovirus Rezeptor (CAR) ist als Bestandteil von Tight Junctions (TJ) an interzellulären Adhäsionsprozessen beteiligt und scheint eine wichtige Rolle in der Karzinogenese zu spielen. Diese ist jedoch insbesondere bei Entstehung von Darmkrebs weitgehend unklar. Ziel der Arbeit war es daher, die funktionelle Bedeutung, mögliche Interaktionspartner sowie die Expressionsregulation von CAR im kolorektalen Karzinom zu analysieren. In den Zelllinien CaCo2, Colo205, DLD1, HCT116, HT29, SW480 und T84 konnte die Expression von CAR (mRNA und Protein) nachgewiesen werden. Nach stabiler CAR-Überexpression durch Transfektion von CARcDNA in DLD1, HCT116 und SW480 wurde das Zellwachstum gehemmt und eine Abnahme von Migration und Invasion induziert. Eine stabile CAR-Inhibition nach Transfektion von CARsiRNA führte in diesen Zelllinien zum Anstieg der Proliferation sowie zu verstärkter Migrations- und Invasionsaktivität, die in DLD1 mit morphologischen Änderungen einhergingen. Eine Genexpressionsanalyse der Zelllinie DLD1 mit CAR-Inhibition identifizierte α-Catenin als das am stärksten regulierte Gen. Obwohl keine direkte Interaktion beider Proteine detektiert werden konnte, führte eine stabile Re-Expression von α-Catenin in DLD1 mit stabiler CAR-Inhibition zu einer deutlichen Reduktion von Proliferation, Migration und Invasion sowie zu einem Rückgang der zellmorphologischen Änderungen. Um den Einfluss von Differenzierung auf die Regulation der CAR-Expression zu untersuchen, erfolgte eine Behandlung aller Zelllinien mit Natriumbutyrat. Dies führte in fünf der sieben Zelllinien zu einer Aktivierung des CAR-Promotors sowie zu einer gesteigerten Expression und Immunoreaktivität von CAR an der Zelloberfläche. Die Zelllinie CaCo2 zeigte nach spontaner Differenzierung durch 21-tägiges Wachstum post Konfluenz ebenfalls eine verstärkte CAR-mRNA-Expression sowie eine erhöhte CAR-Präsenz an der Zelloberfläche. Die gewonnenen Daten konnten die funktionelle Bedeutung von CAR für die Kolonkarzinogenese sowie den Einfluss von α-Catenin auf diese Funktion deutlich machen. Es wurde gezeigt, dass die Expressionsregulation sowie die subzelluläre Verteilung von CAR durch den zellulären Differenzierungsstatus beeinflusst werden kann. N2 - The Coxsackie and Adenovirus Receptor (CAR) is a transmembrane compound of the tight junctions in polarized epithelial cells mediating cellular adhesion. CAR was suggested to play a functional role in the development of epithelial malignomas but detailed knowledge is still lacking, especially for the colorectal carcinoma. Therefore, the functional impact and regulation of CAR expression in human colorectal carcinoma cell models were investigated. CAR protein and mRNA was detectable in the cell lines CaCo2, Colo205, DLD1, HCT116, HT29, SW480 and T84. Stable CAR over expression by transfection of CARcDNA in DLD1, HCT116 and SW480 led to reduced proliferation in vitro and in vivo. Also reduced migration and invasion were observed. Stable CAR inhibition by transfection of CARsiRNA in the same cell lines resulted in increased migration and invasion. In DLD1 morphological changes were found after CAR inhibition. Differential gene expression was detected in DLD1 cells with stable CAR inhibition revealing an 18-fold decrease in α-Catenin gene expression. Loss of α-Catenin was obtained on protein level, too. Although no direct interaction between CAR and α-Catenin could be proven ectopic re-expression of α-Catenin in DLD1 with CAR inhibition reversed the determined functional and morphological effects of a CAR knock down. Then, the impact of differentiation on regulation of CAR expression was investigated. Sodium butyrate treatment induced differentiation in all cell lines (determined by alkaline phosphatase activity), which was paralleled by an increase of CAR immunoreactivity at the plasma membrane in all cell lines but CaCo2. However, CAR protein and mRNA expression, as well as CAR gene promoter activity increased in 5 cell lines only, whereas in SW480 and CaCo2 a down regulation was observed. Spontaneous differentiation of CaCo2 after a growth period of 21 days post confluence resulted in up regulation of CAR mRNA expression as well as increased CAR presence at the plasma membrane. The data suggest that CAR plays a crucial role in the carcinogenesis of colorectal carcinoma which could be influenced by α-Catenin interaction. Differentiation determines the regulation of CAR expression and the subcellular distribution of CAR in colon cancer cells. KW - Coxsackie- und Adenovirus Rezeptor KW - kolorektales Karzinom KW - Tight Junctions KW - alpha-Catenin KW - Differenzierung KW - Coxsackie and Adenovirus Receptor KW - colorectal carcinoma KW - tight junctions KW - alpha-Catenin KW - differentiation Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-31617 ER - TY - THES A1 - Boeuf, Stéphane T1 - Comparative study of gene expression during the differentiation of white and brown preadipocytes N2 - Einleitung Säugetiere haben zwei verschiedene Arten von Fettgewebe: das weiße Fettgewebe, welches vorwiegend zur Lipidspeicherung dient, und das braune Fettgewebe, welches sich durch seine Fähigkeit zur zitterfreien Thermogenese auszeichnet. Weiße und braune Adipozyten sind beide mesodermalen Ursprungs. Die Mechanismen, die zur Entwicklung von Vorläuferzellen in den weißen oder braunen Fettzellphenotyp führen, sind jedoch unbekannt. Durch verschiedene experimentelle Ansätze konnte gezeigt werden, daß diese Adipocyten vermutlich durch die Differenzierung zweier Typen unterschiedlicher Vorläuferzellen entstehen: weiße und braune Preadipozyten. Von dieser Hypothese ausgehend, war das Ziel dieser Studie, die Genexpression weißer und brauner Preadipozyten auf Unterschiede systematisch zu analysieren. Methoden Die zu vergleichenden Zellen wurden aus primären Zellkulturen weißer und brauner Preadipozyten des dsungarischen Zwerghamsters gewonnen. „Representational Difference Analysis“ wurde angewandt, um potentiell unterschiedlich exprimierte Gene zu isolieren. Die daraus resultierenden cDNA Fragmente von Kandidatengenen wurden mit Hilfe der Microarraytechnik untersucht. Die Expression dieser Gene wurde in braunen und weißen Fettzellen in verschiedenen Differenzierungsstadien und in braunem und weißem Fettgewebe verglichen. Ergebnisse 12 Gene, die in braunen und weißen Preadipozyten unterschiedlich exprimiert werden, konnten identifiziert werden. Drei Komplement Faktoren und eine Fettsäuren Desaturase werden in weißen Preadipozyten höher exprimiert; drei Struktur Gene (Fibronectin, Metargidin und a Actinin 4), drei Gene verbunden mit transkriptioneller Regulation (Necdin, Vigilin und das „small nuclear ribonucleoprotein polypeptide A“) sowie zwei Gene unbekannter Funktion werden in braunen Preadipozyten höher exprimiert. Mittels Clusteranalyse (oder Gruppenanalyse) wurden die gesamten Genexpressionsdaten charakterisiert. Dabei konnten die Gene in 4 typischen Expressionsmuster aufgeteilt werden: in weißen Preadipozyten höher exprimierte Gene, in braunen Preadipozyten höher exprimierte Gene, während der Differenzierung herunter regulierte Gene und während der Differenzierung hoch regulierte Gene. Schlußfolgerungen In dieser Studie konnte gezeigt werden, daß weiße und braune Preadipozyten aufgrund der Expression verschiedener Gene unterschieden werden können. Es wurden mehrere Kandidatengene zur Bestimmung weißer und brauner Preadipozyten identifiziert. Außerdem geht aus den Genexpressionsdaten hervor, daß funktionell unterschiedliche Gruppen von Genen eine wichtige Rolle bei der Differenzierung von weißen und braunen Preadipozyten spielen könnten, wie z.B. Gene des Komplementsystems und der extrazellulären Matrix. N2 - Introduction Mammals have two types of adipose tissue: the lipid storing white adipose tissue and the brown adipose tissue characterised by its capacity for non-shivering thermogenesis. White and brown adipocytes have the same origin in mesodermal stem cells. Yet nothing is known so far about the commitment of precursor cells to the white and brown adipose lineage. Several experimental approaches indicate that they originate from the differentiation of two distinct types of precursor cells, white and brown preadipocytes. Based on this hypothesis, the aim of this study was to analyse the gene expression of white and brown preadipocytes in a systematic approach. Experimental approach The white and brown preadipocytes to compare were obtained from primary cell cultures of preadipocytes from the Djungarian dwarf hamster. Representational difference analysis was used to isolate genes potentially differentially expressed between the two cell types. The thus obtained cDNA libraries were spotted on microarrays for a large scale gene expression analysis in cultured preadipocytes and adipocytes and in tissue samples. Results 4 genes with higher expression in white preadipocytes (3 members of the complement system and a fatty acid desaturase) and 8 with higher expression in brown preadipocytes were identified. From the latter 3 coded for structural proteins (fibronectin, metargidin and a actinin 4), 3 for proteins involved in transcriptional regulation (necdin, vigilin and the small nuclear ribonucleoprotein polypeptide A) and 2 are of unknown function. Cluster analysis was applied to the gene expression data in order to characterise them and led to the identification of four major typical expression profiles: genes up-regulated during differentiation, genes down-regulated during differentiation, genes higher expressed in white preadipocytes and genes higher expressed in brown preadipocytes. Conclusion This study shows that white and brown preadipocytes can be distinguished by different expression levels of several genes. These results draw attention to interesting candidate genes for the determination of white and brown preadipocytes (necdin, vigilin and others) and furthermore indicate that potential importance of several functional groups in the differentiation of white and brown preadipocytes, mainly the complement system and extracellular matrix. KW - Säugetiere ; Fettgewebe ; Zelldifferenzierung ; Genexpression KW - Preadipozyt KW - Adipozyt KW - Fettzelle KW - braunes Fettgewebe KW - Differenzierung KW - Genexpression KW - Microarray KW - preadipocyte KW - adipocyte KW - brown adipose tissue KW - differentiation KW - gene expression KW - microarray Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000542 ER -