TY - JOUR A1 - Kaiser, Björn Onno A1 - Cacace, Mauro A1 - Scheck-Wenderoth, Magdalena T1 - 3D coupled fluid and heat transport simulations of the Northeast German Basin and their sensitivity to the spatial discretization - different sensitivities for different mechanisms of heat transport JF - Environmental earth sciences N2 - Based on a numerical model of the Northeast German Basin (NEGB), we investigate the sensitivity of the calculated thermal field as resulting from heat conduction, forced and free convection in response to consecutive horizontal and vertical mesh refinements. Our results suggest that computational findings are more sensitive to consecutive horizontal mesh refinements than to changes in the vertical resolution. In addition, the degree of mesh sensitivity depends strongly on the type of the process being investigated, whether heat conduction, forced convection or free thermal convection represents the active heat driver. In this regard, heat conduction exhibits to be relative robust to imposed changes in the spatial discretization. A systematic mesh sensitivity is observed in areas where forced convection promotes an effective role in shorten the background conductive thermal field. In contrast, free thermal convection is to be regarded as the most sensitive heat transport process as demonstrated by non-systematic changes in the temperature field with respect to imposed changes in the model resolution. KW - Mesh convergence KW - Conduction KW - Advection KW - Convection KW - Thermal field KW - Northeast German Basin Y1 - 2013 U6 - https://doi.org/10.1007/s12665-013-2249-7 SN - 1866-6280 SN - 1866-6299 VL - 70 IS - 8 SP - 3643 EP - 3659 PB - Springer CY - New York ER -