TY - THES A1 - Hendriyana, Andri T1 - Detection and Kirchhoff-type migration of seismic events by use of a new characteristic function T1 - Detektion und Kirchhoff-Migration seismischer Ereignisse durch Verwendung einer neuen charakteristischen Funktion N2 - The classical method of seismic event localization is based on the picking of body wave arrivals, ray tracing and inversion of travel time data. Travel time picks with small uncertainties are required to produce reliable and accurate results with this kind of source localization. Hence recordings, with a low Signal-to-Noise Ratio (SNR) cannot be used in a travel time based inversion. Low SNR can be related with weak signals from distant and/or low magnitude sources as well as with a high level of ambient noise. Diffraction stacking is considered as an alternative seismic event localization method that enables also the processing of low SNR recordings by mean of stacking the amplitudes of seismograms along a travel time function. The location of seismic event and its origin time are determined based on the highest stacked amplitudes (coherency) of the image function. The method promotes an automatic processing since it does not need travel time picks as input data. However, applying diffraction stacking may require longer computation times if only limited computer resources are used. Furthermore, a simple diffraction stacking of recorded amplitudes could possibly fail to locate the seismic sources if the focal mechanism leads to complex radiation patterns which typically holds for both natural and induced seismicity. In my PhD project, I have developed a new work flow for the localization of seismic events which is based on a diffraction stacking approach. A parallelized code was implemented for the calculation of travel time tables and for the determination of an image function to reduce computation time. In order to address the effects from complex source radiation patterns, I also suggest to compute diffraction stacking from a characteristic function (CF) instead of stacking the original wave form data. A new CF, which is called in the following mAIC (modified from Akaike Information Criterion) is proposed. I demonstrate that, the performance of the mAIC does not depend on the chosen length of the analyzed time window and that both P- and S-wave onsets can be detected accurately. To avoid cross-talk between P- and S-waves due to inaccurate velocity models, I separate the P- and S-waves from the mAIC function by making use of polarization attributes. Then, eventually the final image function is represented by the largest eigenvalue as a result of the covariance analysis between P- and S-image functions. Before applying diffraction stacking, I also apply seismogram denoising by using Otsu thresholding in the time-frequency domain. Results from synthetic experiments show that the proposed diffraction stacking provides reliable results even from seismograms with low SNR=1. Tests with different presentations of the synthetic seismograms (displacement, velocity, and acceleration) shown that, acceleration seismograms deliver better results in case of high SNR, whereas displacement seismograms provide more accurate results in case of low SNR recordings. In another test, different measures (maximum amplitude, other statistical parameters) were used to determine the source location in the final image function. I found that the statistical approach is the preferred method particularly for low SNR. The work flow of my diffraction stacking method was finally applied to local earthquake data from Sumatra, Indonesia. Recordings from a temporary network of 42 stations deployed for 9 months around the Tarutung pull-apart Basin were analyzed. The seismic event locations resulting from the diffraction stacking method align along a segment of the Sumatran Fault. A more complex distribution of seismicity is imaged within and around the Tarutung Basin. Two lineaments striking N-S were found in the middle of the Tarutung Basin which support independent results from structural geology. These features are interpreted as opening fractures due to local extension. A cluster of seismic events repeatedly occurred in short time which might be related to fluid drainage since two hot springs are observed at the surface near to this cluster. N2 - Klassische seismologische Verfahren zur Lokalisierung seismischer Ereignisse basieren auf der Bestimmung der Ankunftszeiten von Raumwellenphasen, der Berechnung von Strahlwegen in Untergrundmodellen sowie der Inversion der Laufzeitdaten. Um mit dieser Methode zuverlässige und genaue Lokalisierungsergebnisse zu erhalten, werden Laufzeitdaten mit kleinen Unsicherheiten benötigt. Folgerichtig müssen Seismogramme mit sehr geringen Signal-zu-Rausch Verhältnissen (S/N) häufig verworfen werden. Geringe S/N können einerseits durch schwache Signale am Empfänger, z.B. wegen großer Entfernungen zur Quelle und/oder bei Quellen mit kleiner Magnitude, und andererseits durch einen hohen Rauschpegel verursacht werden. Eine alternative Methode zur Herdlokalisierung ist die sogenannte Diffraktions-Stapel-ung. Hierbei werden die Amplituden der aufgezeichneten Wellenformen entlang von vorhergesagten Laufzeitfunktionen aufgestapelt. Durch konstruktive Aufsummation können auch Signale von Seismogrammen mit geringem S/N zur Lokalisierung beitragen. Als Teil des Verfahrens wird eine sogenannte Image-Funktion berechnet, deren maximale Amplitude (Kohärenz) mit dem Ort und der Zeit des Bebenherdes verknüpft ist. Die Methodik ist für eine Implementation von automatisierten Überwachungssystemen geeignet. Von Nachteil ist der relative hohe Rechenaufwand. Außerdem müssen bei der Diffraktions-Stapelung die komplizierten Abstrahlcharakteristika im Quellbereich und deren Auswirkungen auf die Signale an verschiedenen Empfängern im Unterschied zur Laufzeit-Inversion mit berücksichtigt werden. In meiner Arbeit habe ich eine neue Methodik zur Lokalisierung von Bebenherden unter Verwendung einer Diffraktions-Stapelung entwickelt. Zunächst werden Laufzeiten (Green’s Funktionen) für potentielle Herdlokationen mit Hilfe eines parallelisierten Algorithmus berechnet. Eine erste Vorbearbeitung der Seismogramme mit der Otsu-Threshold-ing Methode im Zeit-Frequenz-Bereich dient zur Unterdrückung von nicht-stationären Rauschanteilen. Anschliessend wird eine neu entwickelte charakteristische Funktion (CF) berechnet, um P- und S-Welleneinsätze in den gefilterten Daten noch stärker hervorzuheben. Die vorgeschlagene CF basiert auf einer modifizierten Version des Akaike Kriteriums. Die neue CF liefert stabile Resultate, die im Unterschied zum klassischen Akaike-Kriterium nicht von der subjektiv festzulegenden Länge des Analysefensters abhängig sind. Die Verwendung der CF ist darüber hinaus entscheidend, um den unerwünschten Einfluss der Abstrahlcharakteristik auf die gemessenen Amplituden bei der Diffraktions-Stapelung zu eliminieren. Eine finale Image-Funktion wird mit Hilfe einer Kovarianzmatrix-Analyse von P- und S- Image-Funktionen bestimmt, um daraus schließlich die Herdlokation zu ermitteln. Das neue Verfahren wird an Hand von synthetischen Daten getestet. Zuverlässige und genaue Resultate konnten selbst bei sehr geringen S/N von 1 erzielt werden. Tests mit verschiedenen Seismogramm-Varianten (Verschiebung, Geschwindigkeit, Beschleunigung) ergaben, dass bei hohem S/N Beschleunigungs-Seismogramme und bei sehr niedrigen S/N Verschiebungs-Seismogramme die besten Ergebnisse lieferten. Schliesslich wurde das Verfahren auf Daten aus einer Lokalbebenuntersuchung auf Sumatra (Indonesien) angewendet. Über einen Zeitraum von 9 Monaten wurde mit einem Netzwerk aus 42 Stationen die Seismizität im Bereich des Tarutung-Beckens an der Sumatra-Störung (SF) erfasst. Die Methode bildete hierbei ein lineares Segment der SF ab. Im Tarutung-Becken wurde eine komplexere Bebenverteilung abgeleitet. Ein Vergleich mit strukturgeologischen Daten liefert Rückschlüsse auf das tektonische und geothermische Regime im Untersuchungsgebiet. KW - time-series analysis KW - inverse theory KW - earthquake source observations KW - seismicity and tectonics KW - wave scattering and diffraction KW - body waves KW - computational seismology KW - Zeitreihenanalyse KW - Inversions-Theorie KW - Beobachtung von Erdbebenquellen KW - Seismizität und Tektonik KW - Wellenbrechung und Diffraktion KW - Raumwellen KW - computergestützte Seismologie Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-398879 ER - TY - JOUR A1 - Rein, Theresa A1 - Hannemann, Katrin A1 - Thomas, Christine A1 - Korn, Michael T1 - Location and characteristics of the X-discontinuity beneath SW Morocco and the adjacent shelf area using P-wave receiver functions JF - Geophysical journal international N2 - Receiver function approaches have proven to be valuable for the investigation of crustal and upper mantle discontinuities whose sharp changes in seismic velocities cause wave conversions. While the crustal and mantle transition zone discontinuities are largely understood, the X-discontinuity at 250-350 km depth is still an object of controversial debate. The origin and global distribution of this structure with a velocity jump of 1.5-4.8% for compressional and shear waves is still unexplained. Although the crustal and mantle transition zone discontinuities beneath SW Morocco and surroundings have been investigated, only a few studies observed the X-discontinuity and place the depth at 260-370 km beneath the region of western Morocco. In order to better locate and characterize the X-discontinuity beneath southwest Morocco, we create P-wave receiver functions using data recorded by the Morocco-Munster array and detect the X-discontinuity at apparent depths of 285-350 km. In the western part of our study region we find apparent depths of similar to 310-340 km. The eastern part of the study area appears more complex: we locate two velocity jumps at apparent depths of around 285-295 km and 330-350 km in the northeast, and in the southeast we find a discontinuity at apparent depths of 340-350 km. Due to the large depth range and the twofold appearance of the X-discontinuity, we suggest that two different phase transitions cause the X-discontinuity beneath SW Morocco. The velocity contrasts at larger depths likely point to the coesite-stishovite phase transition occurring in deep eclogitic pools. The shallower depths can be explained by the transition from orthoenstatite to high-pressure clinoenstatite which requires the reaction between eclogite and peridotite to form orthopyroxene-rich peridotite. This reaction is likely related to previously proposed small-scale mantle upwellings beneath SW Morocco. Since both phase transitions require eclogite occurrence, the location of the X-discontinuity in this region can be used to indicate the location of recycled oceanic crust. KW - body waves KW - mantle discontinuities KW - NW Morocco KW - P-waves Y1 - 2020 U6 - https://doi.org/10.1093/gji/ggaa379 SN - 0956-540X SN - 1365-246X VL - 223 IS - 3 SP - 1780 EP - 1793 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Krüger, Frank A1 - Dahm, Torsten A1 - Hannemann, Katrin T1 - Mapping of Eastern North Atlantic Ocean seismicity from Po/So observations at a mid-aperture seismological broad-band deep sea array JF - Geophysical journal international N2 - A mid-aperture broad-band test array (OBS array DOCTAR) was deployed from June 2011 to April 2012 about 100 km north of the Gloria fault in the Eastern North Atlantic in about 5000 m water depth. In addition arrays were installed on Madeira Island and in western Portugal mainland. For the first time in the Eastern North Atlantic, we recorded a large number of high frequency Po and So waves from local and regional small and moderate earthquakes (M-L < 4). An incoherent beamforming method was adapted to scan continuous data for such Po and So arrivals applying a sliding window waveform migration and frequency-wavenumber technique. We identify about 320 Po and 1550 So arrivals and compare the phase onsets with the ISC catalogue (ISC 2015) for the same time span. Up to a distance of 6 degrees to the DOCTAR stations all events listed in the ISC catalogue could be associated to Po and So phases. Arrivals from events in more than 10 degrees distance could be identified only in some cases. Only few Po and/or So arrivals were detected for earthquakes from the European and African continental area, the continental shelf regions and for earthquakes within or northwest of the Azores plateau. Unexpectedly, earthquake clusters are detected within the oceanic plates north and south of the Gloria fault and far from plate boundaries, indicating active intraplate structures. We also observe and locate numerous small magnitude earthquakes on the segment of the Gloria fault directly south of DOCTAR, which likely coincides with the rupture of the 25 November 1941 event. Local small magnitude earthquakes located beneath DOCTAR show hypocentres up to 30 km depth and strike-slip focal mechanisms. A comparison with detections at temporary mid-aperture arrays on Madeira and in western Portugal shows that the deep ocean array performs much better than the island and the continental array regarding the detection threshold for events in the oceanic plates. We conclude that sparsely distributed mid-aperture seismic arrays in the deep ocean could decrease the detection and location threshold for seismicity with M-L < 4 in the oceanic plate and might constitute a valuable tool to monitor oceanic plate seismicity. KW - body waves KW - earthquake source observations KW - seismicity and tectonics Y1 - 2020 U6 - https://doi.org/10.1093/gji/ggaa054 SN - 0956-540X SN - 1365-246X VL - 221 IS - 2 SP - 1055 EP - 1080 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Zali, Zahra A1 - Ohrnberger, Matthias A1 - Scherbaum, Frank A1 - Cotton, Fabrice A1 - Eibl, Eva P. S. T1 - Volcanic tremor extraction and earthquake detection using music information retrieval algorithms JF - Seismological research letters N2 - Volcanic tremor signals are usually observed before or during volcanic eruptions and must be monitored to evaluate the volcanic activity. A challenge in studying seismic signals of volcanic origin is the coexistence of transient signal swarms and long-lasting volcanic tremor signals. Separating transient events from volcanic tremors can, therefore, contrib-ute to improving upon our understanding of the underlying physical processes. Exploiting the idea of harmonic-percussive separation in musical signal processing, we develop a method to extract the harmonic volcanic tremor signals and to detect tran-sient events from seismic recordings. Based on the similarity properties of spectrogram frames in the time-frequency domain, we decompose the signal into two separate spec-trograms representing repeating (harmonic) and nonrepeating (transient) patterns, which correspond to volcanic tremor signals and earthquake signals, respectively. We reconstruct the harmonic tremor signal in the time domain from the complex spectrogram of the repeating pattern by only considering the phase components for the frequency range in which the tremor amplitude spectrum is significantly contribut-ing to the energy of the signal. The reconstructed signal is, therefore, clean tremor signal without transient events. Furthermore, we derive a characteristic function suitable for the detection of tran-sient events (e.g., earthquakes) by integrating amplitudes of the nonrepeating spectro-gram over frequency at each time frame. Considering transient events like earthquakes, 78% of the events are detected for signal-to-noise ratio = 0.1 in our semisynthetic tests. In addition, we compared the number of detected earthquakes using our method for one month of continuous data recorded during the Holuhraun 2014-2015 eruption in Iceland with the bulletin presented in Agustsdottir et al. (2019). Our single station event detection algorithm identified 84% of the bulletin events. Moreover, we detected a total of 12,619 events, which is more than twice the number of the bulletin events. KW - algorithms KW - body waves KW - earthquakes KW - elastic waves KW - eruptions KW - geologic hazards KW - natural hazards KW - P-waves KW - S-waves KW - seismic waves KW - signal-to-noise ratio KW - swarms KW - volcanic earthquakes Y1 - 2021 U6 - https://doi.org/10.1785/0220210016 SN - 0895-0695 SN - 1938-2057 VL - 92 IS - 6 SP - 3668 EP - 3681 PB - Seismological Society of America CY - Boulder, Colo. ER - TY - JOUR A1 - Jozi Najafabadi, Azam A1 - Haberland, Christian A1 - Le Breton, Eline A1 - Handy, Mark R. A1 - Verwater, Vincent F. A1 - Heit, Benjamin A1 - Weber, Michael T1 - Constraints on crustal structure in the vicinity of the adriatic indenter (European Alps) from Vp and Vp/Vs local earthquake tomography JF - Journal of geophysical research : Solid earth N2 - In this study, 3-D models of P-wave velocity (Vp) and P-wave and S-wave ratio (Vp/Vs) of the crust and upper mantle in the Eastern and eastern Southern Alps (northern Italy and southern Austria) were calculated using local earthquake tomography (LET). The data set includes high-quality arrival times from well-constrained hypocenters observed by the dense, temporary seismic networks of the AlpArray AASN and SWATH-D. The resolution of the LET was checked by synthetic tests and analysis of the model resolution matrix. The small inter-station spacing (average of similar to 15 km within the SWATH-D network) allowed us to image crustal structure at unprecedented resolution across a key part of the Alps. The derived P velocity model revealed a highly heterogeneous crustal structure in the target area. One of the main findings is that the lower crust is thickened, forming a bulge at 30-50 km depth just south of and beneath the Periadriatic Fault and the Tauern Window. This indicates that the lower crust decoupled both from its mantle substratum as well as from its upper crust. The Moho, taken to be the iso-velocity contour of Vp = 7.25 km/s, agrees with the Moho depth from previous studies in the European and Adriatic forelands. It is shallower on the Adriatic side than on the European side. This is interpreted to indicate that the European Plate is subducted beneath the Adriatic Plate in the Eastern and eastern Southern Alps. KW - European Alps KW - crustal structure KW - subduction KW - seismic tomography KW - body waves Y1 - 2022 U6 - https://doi.org/10.1029/2021JB023160 SN - 2169-9313 SN - 2169-9356 VL - 127 IS - 2 PB - American Geophysical Union CY - Washington ER -