TY - GEN A1 - Topçu, Çağdaş A1 - Frühwirth, Matthias A1 - Moser, Maximilian A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij T1 - Disentangling respiratory sinus arrhythmia in heart rate variability records T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Objective: Several different measures of heart rate variability, and particularly of respiratory sinus arrhythmia, are widely used in research and clinical applications. For many purposes it is important to know which features of heart rate variability are directly related to respiration and which are caused by other aspects of cardiac dynamics. Approach: Inspired by ideas from the theory of coupled oscillators, we use simultaneous measurements of respiratory and cardiac activity to perform a nonlinear disentanglement of the heart rate variability into the respiratory-related component and the rest. Main results: The theoretical consideration is illustrated by the analysis of 25 data sets from healthy subjects. In all cases we show how the disentanglement is manifested in the different measures of heart rate variability. Significance: The suggested technique can be exploited as a universal preprocessing tool, both for the analysis of respiratory influence on the heart rate and in cases when effects of other factors on the heart rate variability are in focus. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 913 KW - respiratory sinus arrhythmia KW - heart rate variability KW - coupled oscillators model KW - phase dynamics KW - data analysis Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436315 SN - 1866-8372 IS - 913 ER - TY - JOUR A1 - Topçu, Çağdaş A1 - Frühwirth, Matthias A1 - Moser, Maximilian A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij T1 - Disentangling respiratory sinus arrhythmia in heart rate variability records JF - Physiological Measurement N2 - Objective: Several different measures of heart rate variability, and particularly of respiratory sinus arrhythmia, are widely used in research and clinical applications. For many purposes it is important to know which features of heart rate variability are directly related to respiration and which are caused by other aspects of cardiac dynamics. Approach: Inspired by ideas from the theory of coupled oscillators, we use simultaneous measurements of respiratory and cardiac activity to perform a nonlinear disentanglement of the heart rate variability into the respiratory-related component and the rest. Main results: The theoretical consideration is illustrated by the analysis of 25 data sets from healthy subjects. In all cases we show how the disentanglement is manifested in the different measures of heart rate variability. Significance: The suggested technique can be exploited as a universal preprocessing tool, both for the analysis of respiratory influence on the heart rate and in cases when effects of other factors on the heart rate variability are in focus. KW - respiratory sinus arrhythmia KW - heart rate variability KW - coupled oscillators model KW - phase dynamics KW - data analysis Y1 - 2018 U6 - https://doi.org/10.1088/1361-6579/aabea4 SN - 0967-3334 SN - 1361-6579 VL - 39 IS - 5 PB - IOP Publ. Ltd. CY - Bristol ER -