TY - JOUR A1 - Hocher, Berthold A1 - Reichetzeder, Christoph A1 - Alter, Markus L. T1 - Renal and cardiac effects of DPP-4 inhibitors - from preclinical development to clinical research JF - Kidney & blood pressure research : official organ of the Gesellschaft für Nephrologie N2 - Inhibitors of type 4 dipeptidyl peptidase (DDP-4) were developed and approved for the oral treatment of type 2 diabetes. Its mode of action is to inhibit the degradation of incretins, such as type 1 glucagon like peptide (GLP-1), and GIP. GLP-1 stimulates glucose-dependent insulin secretion from pancreatic beta-cells and suppresses glucagon release from alpha-cells, thereby improving glucose control. Besides its action on the pancreas type 1 glucagon like peptide has direct effects on the heart, vessels and kidney mainly via the type 1 glucagon like peptide receptor (GLP-1R). Moreover, there are substrates of DPP-4 beyond incretins that have proven renal and cardiovascular effects such as BNP/ANP, NPY, PYY or SDF-1 alpha. Preclinical evidence suggests that DPP-4 inhibitors may be effective in acute and chronic renal failure as well as in cardiac diseases like myocardial infarction and heart failure. Interestingly, large cardiovascular meta-analyses of combined Phase II/III clinical trials with DPP-4 inhibitors point all in the same direction: a potential reduction of cardiovascular events in patients treated with these agents. A pooled analysis of pivotal Phase III, placebo-controlled, registration studies of linagliptin further showed a significant reduction of urinary albumin excretion after 24 weeks of treatment. The observation suggests direct renoprotective effects of DPP-4 inhibition that may go beyond its glucose-lowering potential. Type 4 dipeptidyl peptidase inhibitors have been shown to be very well tolerated in general, but for those excreted via the kidney dose adjustments according to renal function are needed to avoid side effects. In conclusion, the direct cardiac and renal effects seen in preclinical studies as well as meta-analysis of clinical trials may offer additional potentials - beyond improvement of glycemic control - for this newer class of drugs, such as acute kidney failure, chronic kidney failure as well as acute myocardial infarction and heart failure. KW - DDP-4 inhibition KW - Diabetes KW - GLP-1 KW - Cardiovascular effects KW - Myocardial infarction KW - Kidney KW - Diabetic nephropathy KW - Acute renal failure Y1 - 2012 U6 - https://doi.org/10.1159/000339028 SN - 1420-4096 VL - 36 IS - 1 SP - 65 EP - 84 PB - Karger CY - Basel ER - TY - JOUR A1 - Reichetzeder, Christoph A1 - Tsuprykov, Oleg A1 - Hocher, Berthold T1 - Endothelin receptor antagonists in clinical research - Lessons learned from preclinical and clinical kidney studies JF - Life sciences : molecular, cellular and functional basis of therapy N2 - Endothelin receptor antagonists (ETRAs) are approved for the treatment of pulmonary hypertension and scleroderma-related digital ulcers. The efforts to approve this class of drugs for renal indications, however, failed so far. Preclinical studies were promising. Transgenic overexpression of ET-1 or ET-2 in rodents causes chronic renal failure. Blocking the ET system was effective in the treatment of renal failure in rodent models. However, various animal studies indicate that blocking the renal tubular ETAR and ETBR causes water and salt retention partially mediated via the epithelial sodium transporter in tubular cells. ETRAs were successfully tested clinically in renal indications in phase 2 trials for the treatment of diabetic nephropathy. They showed efficacy in terms of reducing albumin excretion on top of guideline based background therapy (RAS blockade). However, these promising results could not be translated to successful phase Ill trials so far. The spectrum of serious adverse events was similar to other phase III trials using ETRAs. Potential underlying reasons for these failures and options to solve these issues are discussed. In addition preclinical and clinical studies suggest caution when addressing renal patient populations such as patients with hepatorenal syndrome, patients with any type of cystic kidney disease and patients at risk of contrast media induced nephropathy. The lessons learned in renal indications are also important for other potential promising indications of ETRAs like cancer and heart failure. (C) 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). KW - Endothelin receptor antagonists KW - Kidney KW - Side effects KW - Safety KW - Water and salt retention KW - Clinical trials Y1 - 2014 U6 - https://doi.org/10.1016/j.lfs.2014.02.025 SN - 0024-3205 SN - 1879-0631 VL - 118 IS - 2 SP - 141 EP - 148 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Heunisch, Fabian A1 - von Einem, Gina A1 - Alter, Markus L. A1 - Weist, Andreas A1 - Dschietzig, Thomas A1 - Kretschmer, Axel A1 - Hocher, Berthold T1 - Urinary ET-1 excretion after exposure to radio-contrast media in diabetic patients and patients with preexisting mild impaired renal function JF - Life sciences : molecular, cellular and functional basis of therapy N2 - Aims: Contrast media-induced nephropathy (CIN) is associated with increased morbidity and mortality. The renal endothelin system has been associated with disease progression of various acute and chronic renal diseases. However, robust data coming from adequately powered prospective clinical studies analyzing the short and long-term impacts of the renal ET system in patients with CIN are missing so far. We thus performed a prospective study addressing this topic. Main methods: We included 327 patients with diabetes or renal impairment undergoing coronary angiography. Blood and spot urine were collected before and 24 h after contrast media (CM) application. Patients were followed for 90 days for major clinical events like need for dialysis, unplanned rehospitalization or death. Key findings: The concentration of ET-1 and the urinary ET-1/creatinine ratio decreased in spot urine after CM application (ET-1 concentration: 0.91 +/- 1.23pg/ml versus 0.63 +/- 1.03pg/ml, p<0.001; ET-1/creatinine ratio: 0.14 +/- 0.23 versus 0.09 +/- 0.19, p<0.001). The urinary ET-1 concentrations in patients with CIN decreased significantly more than in patients without CIN (-0.26 +/- 1.42pg/ml vs. -0.79 +/- 1.69pg/ml, p=0.041), whereas the decrease of the urinary ET-1/creatinine ratio was not significantly different (non-CIN patients: -0.05 +/- 0.30; CIN patients: -0.11 +/- 0.21, p=0.223). Urinary ET-1 concentrations as well as the urinary ET-1/creatinine ratio were not associated with clinical events (need for dialysis, rehospitalization or death) during the 90day follow-up after contrast media exposure. However, the urinary ET-1 concentration and the urinary ET-1/creatinine ratio after CM application were higher in those patients who had a decrease of GFR of at least 25% after 90days of follow-up. Significance: In general the ET-1 system in the kidney seems to be down-regulated after contrast media application in patients with moderate CIN risk. Major long-term complications of CIN (need for dialysis, rehospitalization or death) are not associated with the renal ET system. (C) 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license. KW - Urinary ET-1 KW - Clinical study KW - Radiocontrast media-induced nephropathy KW - Kidney Y1 - 2014 U6 - https://doi.org/10.1016/j.lfs.2013.12.233 SN - 0024-3205 SN - 1879-0631 VL - 118 IS - 2 SP - 440 EP - 445 PB - Elsevier CY - Oxford ER -