TY - JOUR A1 - Kormann, C. A1 - Francke, Till A1 - Renner, M. A1 - Bronstert, Axel T1 - Attribution of high resolution streamflow trends in Western Austria BT - an approach based on climate and discharge station data JF - Hydrology and earth system sciences N2 - The results of streamflow trend studies are often characterized by mostly insignificant trends and inexplicable spatial patterns. In our study region, Western Austria, this applies especially for trends of annually averaged runoff. However, analysing the altitudinal aspect, we found that there is a trend gradient from higher-altitude to lower-altitude stations, i.e. a pattern of mostly positive annual trends at higher stations and negative ones at lower stations. At midaltitudes, the trends are mostly insignificant. Here we hypothesize that the streamflow trends are caused by the following two main processes: on the one hand, melting glaciers produce excess runoff at higher-altitude watersheds. On the other hand, rising temperatures potentially alter hydrological conditions in terms of less snowfall, higher infiltration, enhanced evapotranspiration, etc., which in turn results in decreasing streamflow trends at lower-altitude watersheds. However, these patterns are masked at mid-altitudes because the resulting positive and negative trends balance each other. To support these hypotheses, we attempted to attribute the detected trends to specific causes. For this purpose, we analysed trends of filtered daily streamflow data, as the causes for these changes might be restricted to a smaller temporal scale than the annual one. This allowed for the explicit determination of the exact days of year (DOYs) when certain streamflow trends emerge, which were then linked with the corresponding DOYs of the trends and characteristic dates of other observed variables, e.g. the average DOY when temperature crosses the freezing point in spring. Based on these analyses, an empirical statistical model was derived that was able to simulate daily streamflow trends sufficiently well. Analyses of subdaily streamflow changes provided additional insights. Finally, the present study supports many modelling approaches in the literature which found out that the main drivers of alpine streamflow changes are increased glacial melt, earlier snowmelt and lower snow accumulation in wintertime. KW - alpine KW - catchments KW - impacts KW - regimes KW - seasonality KW - snow KW - switzerland KW - temperature KW - time-series KW - variability Y1 - 2015 U6 - https://doi.org/10.5194/hess-19-1225-2015 SN - 1607-7938 SN - 1027-5606 VL - 19 SP - 1225 EP - 1245 PB - EGU CY - Katlenburg-Lindau ER - TY - JOUR A1 - Rottler, Erwin A1 - Francke, Till A1 - Bürger, Gerd A1 - Bronstert, Axel T1 - Long-term changes in central European river discharge for 1869–2016 BT - impact of changing snow covers, reservoir constructions and an intensified hydrological cycle JF - Hydrology and Earth System Sciences N2 - Recent climatic changes have the potential to severely alter river runoff, particularly in snow-dominated river basins. Effects of changing snow covers superimpose with changes in precipitation and anthropogenic modifications of the watershed and river network. In the attempt to identify and disentangle long-term effects of different mechanisms, we employ a set of analytical tools to extract long-term changes in river runoff at high resolution. We combine quantile sampling with moving average trend statistics and empirical mode decomposition and apply these tools to discharge data recorded along rivers with nival, pluvial and mixed flow regimes as well as temperature and precipitation data covering the time frame 1869-2016. With a focus on central Europe, we analyse the long-term impact of snow cover and precipitation changes along with their interaction with reservoir constructions. Our results show that runoff seasonality of snow-dominated rivers decreases. Runoff increases in winter and spring, while discharge decreases in summer and at the beginning of autumn. We attribute this redistribution of annual flow mainly to reservoir constructions in the Alpine ridge. During the course of the last century, large fractions of the Alpine rivers were dammed to produce hydropower. In recent decades, runoff changes induced by reservoir constructions seem to overlap with changes in snow cover. We suggest that Alpine signals propagate downstream and affect runoff far outside the Alpine area in river segments with mixed flow regimes. Furthermore, our results hint at more (intense) rain-fall in recent decades. Detected increases in high discharge can be traced back to corresponding changes in precipitation. KW - empirical mode decomposition KW - atmospheric blocking KW - heavy precipitation KW - streamflow trends KW - climate-change KW - rhine basin KW - time-series KW - events KW - Switzerland KW - variability Y1 - 2020 U6 - https://doi.org/10.5194/hess-24-1721-2020 SN - 1027-5606 SN - 1607-7938 VL - 24 IS - 4 SP - 1721 EP - 1740 PB - Copernicus CY - Göttingen ER -