TY - JOUR A1 - Thiede, Rasmus Christoph A1 - Sobel, Edward A1 - Chen, Jie A1 - Schoenbohm, Lindsay M. A1 - Stockli, Daniel F. A1 - Sudo, Masafumi A1 - Strecker, Manfred T1 - Late Cenozoic extension and crustal doming in the India-Eurasia collision zone new thermochronologic constraints from the NE Chinese Pamir JF - Tectonics N2 - The northward motion of the Pamir indenter with respect to Eurasia has resulted in coeval thrusting, strike-slip faulting, and normal faulting. The eastern Pamir is currently deformed by east-west oriented extension, accompanied by uplift and exhumation of the Kongur Shan (7719m) and Muztagh Ata (7546m) gneiss domes. Both domes are an integral part of the footwall of the Kongur Shan extensional fault system (KES), a 250 km long, north-south oriented graben. Why active normal faulting within the Pamir is primarily localized along the KES and not distributed more widely throughout the orogen has remained unclear. In addition, relatively little is known about how deformation has evolved throughout the Cenozoic, despite refined estimates on present-day crustal deformation rates and microseismicity, which indicate where crustal deformation is presently being accommodated. To better constrain the spatiotemporal evolution of faulting along the KES, we present 39 new apatite fission track, zircon U-Th-Sm/He, and Ar-40/Ar-39 cooling ages from a series of footwall transects along the KES graben shoulder. Combining these data with present-day topographic relief, 1-D thermokinematic and exhumational modeling documents successive stages, rather than synchronous deformation and gneiss dome exhumation. While the exhumation of the Kongur Shan commenced during the late Miocene, extensional processes in the Muztagh Ata massif began earlier and have slowed down since the late Miocene. We present a new model of synorogenic extension suggesting that thermal and density effects associated with a lithospheric tear fault along the eastern margin of the subducting Alai slab localize extensional upper plate deformation along the KES and decouple crustal motion between the central/western Pamir and eastern Pamir/Tarim basin. KW - Pamir KW - gneiss domes KW - collision KW - extension KW - thermochronology KW - exhumation Y1 - 2013 U6 - https://doi.org/10.1002/tect.20050 SN - 0278-7407 VL - 32 IS - 3 SP - 763 EP - 779 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Naliboff, John B. A1 - Glerum, Anne A1 - Brune, Sascha A1 - PĂ©ron-Pinvidic, G. A1 - Wrona, Thilo T1 - Development of 3-D rift heterogeneity through fault network evolution JF - Geophysical Research Letters N2 - Observations of rift and rifted margin architecture suggest that significant spatial and temporal structural heterogeneity develops during the multiphase evolution of continental rifting. Inheritance is often invoked to explain this heterogeneity, such as preexisting anisotropies in rock composition, rheology, and deformation. Here, we use high-resolution 3-D thermal-mechanical numerical models of continental extension to demonstrate that rift-parallel heterogeneity may develop solely through fault network evolution during the transition from distributed to localized deformation. In our models, the initial phase of distributed normal faulting is seeded through randomized initial strength perturbations in an otherwise laterally homogeneous lithosphere extending at a constant rate. Continued extension localizes deformation onto lithosphere-scale faults, which are laterally offset by tens of km and discontinuous along-strike. These results demonstrate that rift- and margin-parallel heterogeneity of large-scale fault patterns may in-part be a natural byproduct of fault network coalescence. KW - magma-poor KW - continental lithosphere KW - extension KW - insights KW - margins KW - architecture KW - systems KW - models KW - sea KW - reactivation Y1 - 2019 VL - 47 IS - 13 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - JOUR A1 - Scharf, Andreas A1 - Sudo, Masafumi A1 - Pracejus, Bernhard A1 - Mattern, Frank A1 - Callegari, Ivan A1 - Bauer, Wilfried A1 - Scharf, Katharina T1 - Late Lutetian (Eocene) mafic intrusion into shallow marine platform deposits north of the Oman Mountains (Rusayl Embayment) and its tectonic significance JF - Journal of African earth sciences N2 - A silica undersaturated alkali-olivine basanitic magma intruded the late Paleocene/early Eocene Jafnayn Formation near Muscat. Geochemical analyses indicate that a significant amount of host rock (limestone) was assimilated into the magma. We dated the basanite as 42.7 +/- 1.0 Ma (2 sigma error; late Lutetian), using the whole rock Ar-40/Ar-39 step-wise heating technique. Intrusion occurred in the hanging wall of a major regional extensional shear zone (Frontal Range Fault, FRF) bounding the northern margin of two domes within the Oman Mountains (Jabal Akhdar and Saih Hatat domes). Two shear intervals along the FRF have been documented. The first interval lasted immediately after emplacement of the Semail Ophiolite (latest Cretaceous-early Eocene) while the second and poorly constrained interval was assumed to have occurred during the Oligocene. The proximity of the basanite to the FRF suggests that magma used extensional faults for the upper part of its ascent path. Reactivated Permian rift faults of the Pangaea rift or other preexisting faults may have been used for the lower ascent part. We conclude that the basanite intrusion coincided with the onset of the second deformation interval along the FRF, because (1) the position of the basanite is near a dextral releasing bend, associated with the second shear interval, (2) the overlap of our Ar-40/Ar-39 age with the cooling curves for rocks from the nearby Jabal Akhdar Dome, and (3) the basanite postdates the first FRF deformation episode by > 10 Ma. Thus, the second interval along the FRF had started already during the late Lutetian and probably lasted into the Miocene. KW - Ar-40/Ar-39 age KW - Jafnayn formation KW - gravitational collapse KW - Basanite KW - extension KW - Limestone assimilation in basanite Y1 - 2020 U6 - https://doi.org/10.1016/j.jafrearsci.2020.103941 SN - 1464-343X SN - 1879-1956 VL - 170 PB - Elsevier CY - Oxford ER -