TY - JOUR A1 - Rackwitz, Jenny A1 - Kopyra, Janina A1 - Dabkowska, Iwona A1 - Ebel, Kenny A1 - Rankovic, MiloS Lj. A1 - Milosavljevic, Aleksandar R. A1 - Bald, Ilko T1 - Sensitizing DNA Towards Low-Energy Electrons with 2-Fluoroadenine JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - 2-Fluoroadenine ((2F)A) is a therapeutic agent, which is suggested for application in cancer radiotherapy. The molecular mechanism of DNA radiation damage can be ascribed to a significant extent to the action of low-energy (<20 eV) electrons (LEEs), which damage DNA by dissociative electron attachment. LEE induced reactions in (2F)A are characterized both isolated in the gas phase and in the condensed phase when it is incorporated into DNA. Information about negative ion resonances and anion-mediated fragmentation reactions is combined with an absolute quantification of DNA strand breaks in (2F)A-containing oligonucleotides upon irradiation with LEEs. The incorporation of (2F)A into DNA results in an enhanced strand breakage. The strand-break cross sections are clearly energy dependent, whereas the strand-break enhancements by (2F)A at 5.5, 10, and 15 eV are very similar. Thus, (2F)A can be considered an effective radiosensitizer operative at a wide range of electron energies. KW - ab initio calculations KW - dissociative electron attachment KW - DNA origami KW - DNA radiation damage KW - fludarabine Y1 - 2016 U6 - https://doi.org/10.1002/anie.201603464 SN - 1433-7851 SN - 1521-3773 VL - 55 SP - 10248 EP - 10252 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schürmann, Robin Mathis A1 - Tsering, Thupten A1 - Tanzer, Katrin A1 - Denifl, Stephan A1 - Kumar, S. V. K. A1 - Bald, Ilko T1 - Resonant Formation of Strand Breaks in Sensitized Oligonucleotides Induced by Low-Energy Electrons (0.5-9 eV) JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - Halogenated nucleobases are used as radiosensitizers in cancer radiation therapy, enhancing the reactivity of DNA to secondary low-energy electrons (LEEs). LEEs induce DNA strand breaks at specific energies (resonances) by dissociative electron attachment (DEA). Although halogenated nucleobases show intense DEA resonances at various electron energies in the gas phase, it is inherently difficult to investigate the influence of halogenated nucleobases on the actual DNA strand breakage over the broad range of electron energies at which DEA can take place (<12 eV). By using DNA origami nanostructures, we determined the energy dependence of the strand break cross-section for oligonucleotides modified with 8-bromoadenine ((8Br)A). These results were evaluated against DEA measurements with isolated (8Br)A in the gas phase. Contrary to expectations, the major contribution to strand breaks is from resonances at around 7 eV while resonances at very low energy (<2 eV) have little influence on strand breaks. KW - cancer radiation therapy KW - dissociative electron attachment KW - DNA origami KW - DNA radiation damage KW - radiosensitizers Y1 - 2017 U6 - https://doi.org/10.1002/anie.201705504 SN - 1433-7851 SN - 1521-3773 VL - 56 SP - 10952 EP - 10955 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schürmann, Robin Mathis A1 - Vogel, Stefanie A1 - Ebel, Kenny A1 - Bald, Ilko T1 - The physico-chemical basis of DNA radiosensitization BT - implications for cancer radiation therapy JF - Chemistry - a European journal N2 - High-energy radiation is used in combination with radiosensitizing therapeutics to treat cancer. The most common radiosensitizers are halogenated nucleosides and cisplatin derivatives, and recently also metal nanoparticles have been suggested as potential radiosensitizing agents. The radiosensitizing action of these compounds can at least partly be ascribed to an enhanced reactivity towards secondary low-energy electrons generated along the radiation track of the high-energy primary radiation, or to an additional emission of secondary reactive electrons close to the tumor tissue. This is referred to as physico-chemical radiosensitization. In this Concept article we present current experimental methods used to study fundamental processes of physico-chemical radiosensitization and discuss the most relevant classes of radiosensitizers. Open questions in the current discussions are identified and future directions outlined, which can lead to optimized treatment protocols or even novel therapeutic concepts. KW - cancer KW - dissociative electron attachment KW - low-energy electrons KW - radiation therapy KW - radiosensitizers Y1 - 2018 U6 - https://doi.org/10.1002/chem.201800804 SN - 0947-6539 SN - 1521-3765 VL - 24 IS - 41 SP - 10271 EP - 10279 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - da Silva, Filipe Ferreira A1 - Varella, Marcio T. do N. A1 - Jones, Nykola C. A1 - Hoffmann, Soren Vronning A1 - Denifl, Stephan A1 - Bald, Ilko A1 - Kopyra, Janina T1 - Electron-Induced Reactions in 3-Bromopyruvic Acid JF - Chemistry - a European journal N2 - 3-Bromopyruvic acid (3BP) is a potential anticancer drug, the action of which on cellular metabolism is not yet entirely clear. The presence of a bromine atom suggests that it is also reactive towards low-energy electrons, which are produced in large quantities during tumour radiation therapy. Detailed knowledge of the interaction of 3BP with secondary electrons is a prerequisite to gain a complete picture of the effects of 3BP in different forms of cancer therapy. Herein, dissociative electron attachment (DEA) to 3BP in the gas phase has been studied both experimentally by using a crossed-beam setup and theoretically through scattering and quantum chemical calculations. These results are complemented by a vacuum ultraviolet absorption spectrum. The main fragmentation channel is the formation of Br- close to 0 eV and within several resonant features at 1.9 and 3-8 eV. At low electron energies, Br- formation proceeds through sigma* and pi* shape resonances, and at higher energies through core-excited resonances. It is found that the electron-capture cross-section is clearly increased compared with that of non-brominated pyruvic acid, but, at the same time, fragmentation reactions through DEA are significantly altered as well. The 3BP transient negative ion is subject to a lower number of fragmentation reactions than those of pyruvic acid, which indicates that 3BP could indeed act by modifying the electron-transport chains within oxidative phosphorylation. It could also act as a radio-sensitiser. KW - density functional calculations KW - dissociative electron attachment KW - drug discovery KW - gas-phase reactions KW - sensitizers Y1 - 2019 U6 - https://doi.org/10.1002/chem.201806132 SN - 0947-6539 SN - 1521-3765 VL - 25 IS - 21 SP - 5498 EP - 5506 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kopyra, Janina A1 - Wierzbicka, Paulina A1 - Tulwin, Adrian A1 - Thiam, Guillaume A1 - Bald, Ilko A1 - Rabilloud, Franck A1 - Abdoul-Carime, Hassan T1 - Experimental and theoretical studies of dissociative electron attachment to metabolites oxaloacetic and citric acids JF - International Journal of Molecular Sciences (IJMS) N2 - In this contribution the dissociative electron attachment to metabolites found in aerobic organisms, namely oxaloacetic and citric acids, was studied both experimentally by means of a crossed-beam setup and theoretically through density functional theory calculations. Prominent negative ion resonances from both compounds are observed peaking below 0.5 eV resulting in intense formation of fragment anions associated with a decomposition of the carboxyl groups. In addition, resonances at higher energies (3–9 eV) are observed exclusively from the decomposition of the oxaloacetic acid. These fragments are generated with considerably smaller intensities. The striking findings of our calculations indicate the different mechanism by which the near 0 eV electron is trapped by the precursor molecule to form the transitory negative ion prior to dissociation. For the oxaloacetic acid, the transitory anion arises from the capture of the electron directly into some valence states, while, for the citric acid, dipole- or multipole-bound states mediate the transition into the valence states. What is also of high importance is that both compounds while undergoing DEA reactions generate highly reactive neutral species that can lead to severe cell damage in a biological environment. KW - dissociative electron attachment KW - negative ions KW - oxaloacetic acid KW - citric acid KW - mass spectrometry Y1 - 2021 U6 - https://doi.org/10.3390/ijms22147676 SN - 1422-0067 VL - 22 IS - 14 PB - MDPI CY - Basel ER -