TY - JOUR A1 - Eccard, Jana A1 - Roedel, Heiko G. T1 - Optimizing temperament through litter size in short-lived, iteroparous mammals in seasonal environments JF - Developmental psychobiology : the journal of the International Society for Developmental Psychobiology N2 - A number of short-lived, iteroparous animal species have small broods in the early breeding season and larger broods in later breeding season. Brood size affects not only offspring size, but as recent results suggest, may also affect offspring's temperament, hormonal status, and aggression as adults. Most populations of short-lived, iteroparous mammals fluctuate predictably over the season, with low densities in winter, increasing densities in summer and a population peak in late summer followed by a population breakdown. If animals live only through parts of the season, possibly such differences in density and hence also in social environments among seasons require different personality types to increase individual fitness. We present data on behavior of European rabbits from a field enclosure study. These data clearly show that aggressiveness is higher in young from smaller litters than in young from larger litters, and smaller litters are usually born during the early breeding season. Moreover, our data suggest that behavioral types of the young rabbits are stable over time, at least during their subadult life. We suggest, that changes in mean litter size over the course of the breeding season may not only be a product of mothers' age or food availability, but may also have an adaptive function by preparing offspring characteristics for adulthood in a social environment undergoing predictable density changes within the season. KW - animal personality KW - competitive performance KW - European rabbit KW - Oryctolagus cuniculus Y1 - 2011 U6 - https://doi.org/10.1002/dev.20547 SN - 0012-1630 VL - 53 IS - 6 SP - 585 EP - 591 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Gracceva, Giulia A1 - Herde, Antje A1 - Groothuis, Ton G. G. A1 - Koolhaas, Jaap M. A1 - Palme, Rupert A1 - Eccard, Jana T1 - Turning shy on a winter's day: Effects of season on personality and stress response in Microtus arvalis JF - Ethology N2 - Animal personalities are by definition stable over time, but to what extent they may change during development and in adulthood to adjust to environmental change is unclear. Animals of temperate environments have evolved physiological and behavioural adaptations to cope with the cyclic seasonal changes. This may also result in changes in personality: suites of behavioural and physiological traits that vary consistently among individuals. Winter, typically the adverse season challenging survival, may require individuals to have shy/cautious personality, whereas during summer, energetically favourable to reproduction, individuals may benefit from a bold/risk-taking personality. To test the effects of seasonal changes in early life and in adulthood on behaviours (activity, exploration and anxiety), body mass and stress response, we manipulated the photoperiod and quality of food in two experiments to simulate the conditions of winter and summer. We used the common voles (Microtus arvalis) as they have been shown to display personality based on behavioural consistency over time and contexts. Summer-born voles allocated to winter conditions at weaning had lower body mass, a higher corticosterone increase after stress and a less active, more cautious behavioural phenotype in adulthood compared to voles born in and allocated to summer conditions. In contrast, adult females only showed plasticity in stress-induced corticosterone levels, which were higher in the animals that were transferred to the winter conditions than to those staying in summer conditions. These results suggest a sensitive period for season-related behavioural plasticity in which juveniles shift over the bold-shy axis. KW - animal personality KW - seasonal environment KW - photoperiod KW - juvenile plasticity KW - corticosterone Y1 - 2014 U6 - https://doi.org/10.1111/eth.12246 SN - 0179-1613 SN - 1439-0310 VL - 120 IS - 8 SP - 753 EP - 767 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Mazza, Valeria A1 - Eccard, Jana A1 - Zaccaroni, Marco A1 - Jacob, Jens A1 - Dammhahn, Melanie T1 - The fast and the flexible BT - cognitive style drives individual variation in cognition in a small mammal JF - Animal behaviour KW - animal personality KW - associative learning KW - behavioural syndrome KW - fast and slow learner KW - individual differences KW - Myodes glareolus KW - rodent KW - speed-accuracy trade-off KW - temperament Y1 - 2018 U6 - https://doi.org/10.1016/j.anbehav.2018.01.011 SN - 0003-3472 SN - 1095-8282 VL - 137 SP - 119 EP - 132 PB - Elsevier CY - London ER - TY - JOUR A1 - Mazza, Valeria A1 - Jacob, Jens A1 - Dammhahn, Melanie A1 - Zaccaroni, Marco A1 - Eccard, Jana T1 - Individual variation in cognitive style reflects foraging and antipredator strategies in a small mammal JF - Scientific Reports N2 - Balancing foraging gain and predation risk is a fundamental trade-off in the life of animals. Individual strategies to acquire, process, store and use information to solve cognitive tasks are likely to affect speed and flexibility of learning, and ecologically relevant decisions regarding foraging and predation risk. Theory suggests a functional link between individual variation in cognitive style and behaviour (animal personality) via speed-accuracy and risk-reward trade-offs. We tested whether cognitive style and personality affect risk-reward trade-off decisions posed by foraging and predation risk. We exposed 21 bank voles (Myodes glareolus) that were bold, fast learning and inflexible and 18 voles that were shy, slow learning and flexible to outdoor enclosures with different risk levels at two food patches. We quantified individual food patch exploitation, foraging and vigilance behaviour. Although both types responded to risk, fast animals increasingly exploited both food patches, gaining access to more food and spending less time searching and exercising vigilance. Slow animals progressively avoided high-risk areas, concentrating foraging effort in the low-risk one, and devoting >50% of visit to vigilance. These patterns indicate that individual differences in cognitive style/personality are reflected in foraging and anti-predator decisions that underlie the individual risk-reward bias. KW - animal personality KW - bank voles KW - behavioral flexibility KW - coping styles KW - exploratory-behavior KW - mustelid predation KW - social information KW - stress KW - trade-offs KW - voles clethrionomys-glareolus Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-46582-1 SN - 2045-2322 VL - 9 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - JOUR A1 - Kowalski, Gabriele Joanna A1 - Grimm, Volker A1 - Herde, Antje A1 - Guenther, Anja A1 - Eccard, Jana T1 - Does Animal Personality Affect Movement in Habitat Corridors? BT - Experiments with Common Voles (Microtus arvalis) Using Different Corridor Widths JF - Animals N2 - Animal personality may affect an animal’s mobility in a given landscape, influencing its propensity to take risks in an unknown environment. We investigated the mobility of translocated common voles in two corridor systems 60 m in length and differing in width (1 m and 3 m). Voles were behaviorally phenotyped in repeated open field and barrier tests. Observed behavioral traits were highly repeatable and described by a continuous personality score. Subsequently, animals were tracked via an automated very high frequency (VHF) telemetry radio tracking system to monitor their movement patterns in the corridor system. Although personality did not explain movement patterns, corridor width determined the amount of time spent in the habitat corridor. Voles in the narrow corridor system entered the corridor faster and spent less time in the corridor than animals in the wide corridor. Thus, landscape features seem to affect movement patterns more strongly than personality. Meanwhile, site characteristics, such as corridor width, could prove to be highly important when designing corridors for conservation, with narrow corridors facilitating faster movement through landscapes than wider corridors. KW - activity KW - animal personality KW - wildlife corridors KW - habitat connectivity KW - individual differences KW - rodents Y1 - 2019 U6 - https://doi.org/10.3390/ani9060291 SN - 2076-2615 VL - 9 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Steinhoff, Philip O. M. A1 - Warfen, Bennet A1 - Voigt, Sissy A1 - Uhl, Gabriele A1 - Dammhahn, Melanie T1 - Individual differences in risk-taking affect foraging across different landscapes of fear JF - Oikos N2 - One of the strongest determinants of behavioural variation is the tradeoff between resource gain and safety. Although classical theory predicts optimal foraging under risk, empirical studies report large unexplained variation in behaviour. Intrinsic individual differences in risk-taking behaviour might contribute to this variation. By repeatedly exposing individuals of a small mesopredator to different experimental landscapes of risks and resources, we tested 1) whether individuals adjust their foraging behaviour according to predictions of the general tradeoff between energy gain and predation avoidance and 2) whether individuals differ consistently and predictably from each other in how they solve this tradeoff. Wild-caught individuals (n = 42) of the jumping spiderMarpissa muscosa, were subjected to repeated release and open-field tests to quantify among-individual variation in boldness and activity. Subsequently, individuals were tested in four foraging tests that differed in risk level (white/dark background colour) and risk variation (constant risk/variable risk simulated by bird dummy overflights) and contained inaccessible but visually perceivable food patches. When exposed to a white background, individuals reduced some aspects of movement and foraging intensity, suggesting that the degree of camouflage serves as a proxy of perceived risk in these predators. Short pulses of acute predation risk, simulated by bird overflights, had only small effects on aspects of foraging behaviour. Notably, a significant part of variation in foraging was due to among-individual differences across risk landscapes that are linked to consistent individual variation in activity, forming a behavioural syndrome. Our results demonstrate the importance of among-individual differences in behaviour of animals that forage under different levels of perceived risk. Since these differences likely affect food-web dynamics and have fitness consequences, future studies should explore the mechanisms that maintain the observed variation in natural populations. KW - animal personality KW - behavioural syndrome KW - foraging KW - jumping spider KW - landscape of fear KW - risk-reward tradeoff Y1 - 2020 U6 - https://doi.org/10.1111/oik.07508 SN - 0030-1299 SN - 1600-0706 VL - 129 IS - 12 SP - 1891 EP - 1902 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Schirmer, Annika A1 - Hoffmann, Julia A1 - Eccard, Jana A1 - Dammhahn, Melanie T1 - My niche BT - individual spatial niche specialization affects within- and between-species interactions JF - Proceedings of the Royal Society of London : B, Biological sciences N2 - Intraspecific trait variation is an important determinant of fundamental ecological interactions. Many of these interactions are mediated by behaviour. Therefore, interindividual differences in behaviour should contribute to individual niche specialization. Comparable with variation in morphological traits, behavioural differentiation between individuals should limit similarity among competitors and thus act as a mechanism maintaining within-species variation in ecological niches and facilitating species coexistence. Here, we aimed to test whether interindividual differences in boldness covary with spatial interactions within and between two ecologically similar, co-occurring rodent species (Myodes glareolus, Apodemus agrarius). In five subpopulations in northeast Germany, we quantified individual differences in boldness via repeated standardized tests and spatial interaction patterns via capture-mark- recapture (n = 126) and automated VHF telemetry (n = 36). We found that boldness varied with space use in both species. Individuals of the same population occupied different spatial niches, which resulted in non-random patterns of within- and between-species spatial interactions. Behavioural types mainly differed in the relative importance of intra- versus interspecific competition. Within-species variation along this competition gradient could contribute to maintaining individual niche specialization. Moreover, behavioural differentiation between individuals limits similarity among competitors, which might facilitate the coexistence of functionally equivalent species and, thus, affect community dynamics and local biodiversity. KW - animal personality KW - competition KW - individual niche specialization KW - movement ecology KW - coexistence KW - small mammals Y1 - 2020 U6 - https://doi.org/10.1098/rspb.2019.2211 SN - 0962-8452 SN - 1471-2954 VL - 287 IS - 1918 PB - Royal Society CY - London ER - TY - JOUR A1 - Mazza, Valeria A1 - Dammhahn, Melanie A1 - Lösche, Elisa A1 - Eccard, Jana T1 - Small mammals in the big city BT - behavioural adjustments of non-commensal rodents to urban environments JF - Global change biology N2 - A fundamental focus of current ecological and evolutionary research is to illuminate the drivers of animals' success in coping with human-induced rapid environmental change (HIREC). Behavioural adaptations are likely to play a major role in coping with HIREC because behaviour largely determines how individuals interact with their surroundings. A substantial body of research reports behavioural modifications in urban dwellers compared to rural conspecifics. However, it is often unknown whether the observed phenotypic divergence is due to phenotypic plasticity or the product of genetic adaptations. Here, we aimed at investigating (a) whether behavioural differences arise also between rural and urban populations of non-commensal rodents; and (b) whether these differences result from behavioural flexibility or from intrinsic behavioural characteristics, such as genetic or maternal effects. We captured and kept under common environment conditions 42 rural and 52 urban adult common voles (Microtus arvalis) from seven subpopulations along a rural-urban gradient. We investigated individual variation in behavioural responses associated with risk-taking and exploration, in situ at the time of capture in the field and ex situ after 3 months in captivity. Urban dwellers were bolder and more explorative than rural conspecifics at the time of capture in their respective sites (in situ). However, when tested under common environmental conditions ex situ, rural individuals showed little change in their behavioural responses whereas urban individuals altered their behaviour considerably and were consistently shyer and less explorative than when tested in situ. The combination of elevated risk-taking and exploration with high behavioural flexibility might allow urban populations to successfully cope with the challenges of HIREC. Investigating whether the observed differences in behavioural flexibility are adaptive and how they are shaped by additive and interactive effects of genetic make-up and past environmental conditions will help illuminate eco-evolutionary dynamics under HIREC and predict persistence of populations under urban conditions. KW - animal personality KW - behavioural adjustment KW - behavioural flexibility KW - environmental change KW - HIREC KW - rodents KW - urbanization Y1 - 2020 U6 - https://doi.org/10.1111/gcb.15304 SN - 1354-1013 SN - 1365-2486 VL - 26 IS - 11 SP - 6326 EP - 6337 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Eccard, Jana A1 - Liesenjohann, Thilo A1 - Dammhahn, Melanie T1 - Among-individual differences in foraging modulate resource exploitation under perceived predation risk JF - Oecologia N2 - Foraging is risky and involves balancing the benefits of resource acquisition with costs of predation. Optimal foraging theory predicts where, when and how long to forage in a given spatiotemporal distribution of risks and resources. However, significant variation in foraging behaviour and resource exploitation remain unexplained. Using single foragers in artificial landscapes of perceived risks and resources with diminishing returns, we aimed to test whether foraging behaviour and resource exploitation are adjusted to risk level, vary with risk during different components of foraging, and (co)vary among individuals. We quantified foraging behaviour and resource exploitation for 21 common voles (Microtus arvalis). By manipulating ground cover, we created simple landscapes of two food patches varying in perceived risk during feeding in a patch and/or while travelling between patches. Foraging of individuals was variable and adjusted to risk level and type. High risk during feeding reduced feeding duration and food consumption more strongly than risk while travelling. Risk during travelling modified the risk effects of feeding for changes between patches and resulting evenness of resource exploitation. Across risk conditions individuals differed consistently in when and how long they exploited resources and exposed themselves to risk. These among-individual differences in foraging behaviour were associated with consistent patterns of resource exploitation. Thus, different strategies in foraging-under-risk ultimately lead to unequal payoffs and might affect lower trophic levels in food webs. Inter-individual differences in foraging behaviour, i.e. foraging personalities, are an integral part of foraging behaviour and need to be fully integrated into optimal foraging theory. KW - animal personality KW - giving-up density KW - intra-specific trait variation KW - landscape of fear KW - optimal foraging KW - predation risk KW - resource KW - exploitation Y1 - 2020 U6 - https://doi.org/10.1007/s00442-020-04773-y SN - 0029-8549 SN - 1432-1939 VL - 194 IS - 4 SP - 621 EP - 634 PB - Springer CY - Berlin ER - TY - JOUR A1 - Dammhahn, Melanie A1 - Mazza, Valeria A1 - Schirmer, Annika A1 - Göttsche, Claudia A1 - Eccard, Jana T1 - Of city and village mice BT - behavioural adjustments of striped field mice to urban environments JF - Scientific Reports N2 - A fundamental question of current ecological research concerns the drives and limits of species responses to human-induced rapid environmental change (HIREC). Behavioural responses to HIREC are a key component because behaviour links individual responses to population and community changes. Ongoing fast urbanization provides an ideal setting to test the functional role of behaviour for responses to HIREC. Consistent behavioural differences between conspecifics (animal personality) may be important determinants or constraints of animals’ adaptation to urban habitats. We tested whether urban and rural populations of small mammals differ in mean trait expression, flexibility and repeatability of behaviours associated to risk-taking and exploratory tendencies. Using a standardized behavioural test in the field, we quantified spatial exploration and boldness of striped field mice (Apodemus agrarius, n = 96) from nine sub-populations, presenting different levels of urbanisation and anthropogenic disturbance. The level of urbanisation positively correlated with boldness, spatial exploration and behavioural flexibility, with urban dwellers being bolder, more explorative and more flexible in some traits than rural conspecifics. Thus, individuals seem to distribute in a non-random way in response to human disturbance based on their behavioural characteristics. Animal personality might therefore play a key role in successful coping with the challenges of HIREC. KW - personality-traits KW - apodemus-agrarius KW - exploratory-behavior KW - fitness consequences KW - individual variation KW - avian personalities KW - animal personality KW - rural populations KW - natural-selection KW - natal dispersal Y1 - 2020 U6 - https://doi.org/10.1038/s41598-020-69998-6 SN - 2045-2322 VL - 10 PB - Macmillan Publishers Limited CY - London ER -