TY - JOUR A1 - Beckmann, Nadine A1 - Kadow, Stephanie A1 - Schumacher, Fabian A1 - Goethert, Joachim R. A1 - Kesper, Stefanie A1 - Draeger, Annette A1 - Schulz-Schaeffer, Walter J. A1 - Wang, Jiang A1 - Becker, Jan U. A1 - Kramer, Melanie A1 - Kuehn, Claudine A1 - Kleuser, Burkhard A1 - Becker, Katrin Anne A1 - Gulbins, Erich A1 - Carpinteiro, Alexander T1 - Pathological manifestations of Farber disease in a new mouse model JF - Biological chemistry N2 - Farber disease (FD) is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments are clinically available and affected patients have a severely shortened lifespan. Due to the low incidence, the pathogenesis of FD is still poorly understood. Here, we report a novel acid ceramidase mutant mouse model that enables the study of pathogenic mechanisms of FD and ceramide accumulation. Asah1(tmEx1) mice were generated by deletion of the acid ceramidase signal peptide sequence. The effects on lysosomal targeting and activity of the enzyme were assessed. Ceramide and sphingomyelin levels were quantified by liquid chromatography tandem-mass spectrometry (LC-MS/MS) and disease manifestations in several organ systems were analyzed by histology and biochemistry. We show that deletion of the signal peptide sequence disrupts lysosomal targeting and enzyme activity, resulting in ceramide and sphingomyelin accumulation. The affected mice fail to thrive and die early. Histiocytic infiltrations were observed in many tissues, as well as lung inflammation, liver fibrosis, muscular disease manifestations and mild kidney injury. Our new mouse model mirrors human FD and thus offers further insights into the pathogenesis of this disease. In the future, it may also facilitate the development of urgently needed therapies. KW - acid ceramidase KW - ceramide KW - Farber disease KW - lysosomal storage disorders Y1 - 2018 U6 - https://doi.org/10.1515/hsz-2018-0170 SN - 1431-6730 SN - 1437-4315 VL - 399 IS - 10 SP - 1183 EP - 1202 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Beckmann, Nadine A1 - Becker, Katrin Anne A1 - Kadow, Stephanie A1 - Schumacher, Fabian A1 - Kramer, Melanie A1 - Kuehn, Claudine A1 - Schulz-Schaeffer, Walter J. A1 - Edwards, Michael J. A1 - Kleuser, Burkhard A1 - Gulbins, Erich A1 - Carpinteiro, Alexander T1 - Acid Sphingomyelinase Deficiency Ameliorates Farber Disease JF - International journal of molecular sciences N2 - Farber disease is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments for Farber disease are clinically available, and affected patients have a severely shortened lifespan. We have recently reported a novel acid ceramidase deficiency model that mirrors the human disease closely. Acid sphingomyelinase is the enzyme that generates ceramide upstream of acid ceramidase in the lysosomes. Using our acid ceramidase deficiency model, we tested if acid sphingomyelinase could be a potential novel therapeutic target for the treatment of Farber disease. A number of functional acid sphingomyelinase inhibitors are clinically available and have been used for decades to treat major depression. Using these as a therapeutic for Farber disease, thus, has the potential to improve central nervous symptoms of the disease as well, something all other treatment options for Farber disease can’t achieve so far. As a proof-of-concept study, we first cross-bred acid ceramidase deficient mice with acid sphingomyelinase deficient mice in order to prevent ceramide accumulation. Double-deficient mice had reduced ceramide accumulation, fewer disease manifestations, and prolonged survival. We next targeted acid sphingomyelinase pharmacologically, to test if these findings would translate to a setting with clinical applicability. Surprisingly, the treatment of acid ceramidase deficient mice with the acid sphingomyelinase inhibitor amitriptyline was toxic to acid ceramidase deficient mice and killed them within a few days of treatment. In conclusion, our study provides the first proof-of-concept that acid sphingomyelinase could be a potential new therapeutic target for Farber disease to reduce disease manifestations and prolong survival. However, we also identified previously unknown toxicity of the functional acid sphingomyelinase inhibitor amitriptyline in the context of Farber disease, strongly cautioning against the use of this substance class for Farber disease patients. KW - Farber disease KW - lysosomal storage disorders KW - acid ceramidase KW - acid sphingomyelinase KW - amitriptyline Y1 - 2019 U6 - https://doi.org/10.3390/ijms20246253 SN - 1422-0067 VL - 20 IS - 24 PB - MDPI CY - Basel ER - TY - JOUR A1 - Grafen, Anika A1 - Schumacher, Fabian A1 - Chithelen, Janice A1 - Kleuser, Burkhard A1 - Beyersdorf, Niklas A1 - Schneider-Schaulies, Jürgen T1 - Use of Acid Ceramidase and Sphingosine Kinase Inhibitors as Antiviral Compounds Against Measles Virus Infection of Lymphocytes in vitro JF - Frontiers in Cell and Developmental Biology N2 - As structural membrane components and signaling effector molecules sphingolipids influence a plethora of host cell functions, and by doing so also the replication of viruses. Investigating the effects of various inhibitors of sphingolipid metabolism in primary human peripheral blood lymphocytes (PBL) and the human B cell line BJAB we found that not only the sphingosine kinase (SphK) inhibitor SKI-II, but also the acid ceramidase inhibitor ceranib-2 efficiently inhibited measles virus (MV) replication. Virus uptake into the target cells was not grossly altered by the two inhibitors, while titers of newly synthesized MV were reduced by approximately 1 log (90%) in PBL and 70-80% in BJAB cells. Lipidomic analyses revealed that in PBL SKI-II led to increased ceramide levels, whereas in BJAB cells ceranib-2 increased ceramides. SKI-II treatment decreased sphingosine-1-phosphate (S1P) levels in PBL and BJAB cells. Furthermore, we found that MV infection of lymphocytes induced a transient (0.5-6 h) increase in S1P, which was prevented by SKI-II. Investigating the effect of the inhibitors on the metabolic (mTORC1) activity we found that ceranib-2 reduced the phosphorylation of p70 S6K in PBL, and that both inhibitors, ceranib-2 and SKI-II, reduced the phosphorylation of p70 S6K in BJAB cells. As mTORC1 activity is required for efficient MV replication, this effect of the inhibitors is one possible antiviral mechanism. In addition, reduced intracellular S1P levels affect a number of signaling pathways and functions including Hsp90 activity, which was reported to be required for MV replication. Accordingly, we found that pharmacological inhibition of Hsp90 with the inhibitor 17-AAG strongly impaired MV replication in primary PBL. Thus, our data suggest that treatment of lymphocytes with both, acid ceramidase and SphK inhibitors, impair MV replication by affecting a number of cellular activities including mTORC1 and Hsp90, which alter the metabolic state of the cells causing a hostile environment for the virus. KW - measles virus KW - sphingolipids KW - acid ceramidase KW - acid ceramidase inhibitor ceranib-2 KW - sphingosine kinase KW - sphingosine kinase inhibitor SKI-II Y1 - 2019 U6 - https://doi.org/10.3389/fcell.2019.00218 SN - 2296-634X VL - 7 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Naser, Eyad A1 - Kadow, Stephanie A1 - Schumacher, Fabian A1 - Mohamed, Zainelabdeen H. A1 - Kappe, Christian A1 - Hessler, Gabriele A1 - Pollmeier, Barbara A1 - Kleuser, Burkhard A1 - Arenz, Christoph A1 - Becker, Katrin Anne A1 - Gulbins, Erich A1 - Carpinteiro, Alexander T1 - Characterization of the small molecule ARC39 BT - a direct and specific inhibitor of acid sphingomyelinase in vitro[S] JF - Journal of Lipid Research N2 - Inhibition of acid sphingomyelinase (ASM), a lysosomal enzyme that catalyzes the hydrolysis of sphingomyelin into ceramide and phosphorylcholine, may serve as an investigational tool or a therapeutic intervention to control many diseases. Specific ASM inhibitors are currently not sufficiently characterized. Here, we found that 1-aminodecylidene bis-phosphonic acid (ARC39) specifically and efficiently (>90%) inhibits both lysosomal and secretory ASM in vitro. Results from investigating sphingomyelin phosphodiesterase 1 (SMPD1/Smpd1) mRNA and ASM protein levels suggested that ARC39 directly inhibits ASM's catalytic activity in cultured cells, a mechanism that differs from that of functional inhibitors of ASM. We further provide evidence that ARC39 dose- and time-dependently inhibits lysosomal ASM in intact cells, and we show that ARC39 also reduces platelet- and ASM-promoted adhesion of tumor cells. The observed toxicity of ARC39 is low at concentrations relevant for ASM inhibition in vitro, and it does not strongly alter the lysosomal compartment or induce phospholipidosis in vitro. When applied intraperitoneally in vivo, even subtoxic high doses administered short-term induced sphingomyelin accumulation only locally in the peritoneal lavage without significant accumulation in plasma, liver, spleen, or brain. These findings require further investigation with other possible chemical modifications. In conclusion, our results indicate that ARC39 potently and selectively inhibits ASM in vitro and highlight the need for developing compounds that can reach tissue concentrations sufficient for ASM inhibition in vivo. KW - sphingolipids KW - sphingomyelin KW - cerami-des KW - lipid metabolism KW - enzymology KW - lysosome KW - lysosomal hydrolases KW - acid ceramidase KW - bisphosphonates KW - functional inhibitors of acid sphin-gomyelinase KW - 1-aminodecylidene bis-phosphonic acid Y1 - 2021 U6 - https://doi.org/10.1194/jlr.RA120000682 SN - 1539-7262 SN - 0022-2275 VL - 61 IS - 6 SP - 896 EP - 910 PB - American Society for Biochemistry and Molecular Biology CY - Bethesda ER -