TY - JOUR A1 - Shainyan, Bagrat A. A1 - Tolstikova, Ljudmila L. A1 - Schilde, Uwe T1 - Simple methods for the preparation of N-triflyl guanidines and the structure of compounds with the CF3SO2N=C-N fragment JF - Journal of fluorine chemistry N2 - Two novel and simple approaches to N-triflyl guanidines are elaborated. Owing to very strong conjugation the formally double C=N bond of TIN=C(NHR)(2) is longer than the formally single N-C bonds. Energetic effect of the triflylgroup on the conjugation in the N-C=N moiety is estimated to be >= 150 kcal/mol. KW - N-triflyl guanidines KW - Synthesis KW - Structure KW - X-ray KW - MP2 calculations Y1 - 2012 U6 - https://doi.org/10.1016/j.fluchem.2011.12.004 SN - 0022-1139 VL - 135 IS - 1 SP - 261 EP - 264 PB - Elsevier CY - Lausanne ER - TY - JOUR A1 - Moskalik, Mikhail Yu A1 - Shainyan, Bagrat A. A1 - Astakhova, Vera V. A1 - Schilde, Uwe T1 - Oxidative addition of trifluoromethanesulfonamide to cycloalkadienes JF - Tetrahedron N2 - In the oxidative system (t-BuOCl+NaI) trifluoromethanesulfonamide is regio- and stereoselectively added to only one double bond of cyclopentadiene and 1,3-cyclohexadiene giving rise to 1,1,1-trifluoro-N-(5-iodocyclopent-2-en-1-yl)methanesulfonamide 7 and trans-N,N'-cyclohex-3-en-1,2-diylbis(1,1,1-trifluoromethanesulfonamide) 8. The structure of 7 and 8 was determined by X-ray, NMR, and MS. With 1,4-cyclohexadiene, addition to both double bonds occurs with the formation of N,N'-(4-chloro-5-iodocyclohexan-1,2-diyl)bis(1,1,1-trifluoromethanesulfonamide) 9. Under the action of sodium iodide in acetone, the latter product undergoes halogenophilic attack with the reduction of the CHI group and elimination of HCl to give trans-N,N'-cyclohex-4-en-1,2-diylbis(1,1,1-trifluoromethanesulfonamide) 10, whose structure was also determined by X-ray analysis. 1,3,5-Cycloheptatriene under these conditions is oxidized to benzaldehyde and does not react with trifluoromethanesulfonamide. KW - Trifluoromethanesulfonamide KW - Cyclodienes KW - 1,2-Disulfonamides KW - Allylamides KW - X-ray Y1 - 2013 U6 - https://doi.org/10.1016/j.tet.2012.10.099 SN - 0040-4020 VL - 69 IS - 2 SP - 705 EP - 711 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Moskalik, Mikhail Yu. A1 - Astakhova, Vera V. A1 - Schilde, Uwe A1 - Sterkhova, Irina V. A1 - Shainyan, Bagrat A. T1 - Assembling of 3,6-diazabicyclo[3.1.0]hexane framework in oxidative triflamidation of substituted buta-1,3-dienes JF - Tetrahedron KW - Trifluoromethanesulfonamide KW - Arenesulfonamides KW - Cycloaddition KW - 1,3-Dienes KW - 3,6-Diazabicyclo[3.1.0]hexanes KW - X-ray Y1 - 2014 U6 - https://doi.org/10.1016/j.tet.2014.09.050 SN - 0040-4020 VL - 70 IS - 45 SP - 8636 EP - 8641 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Shainyan, Bagrat A. A1 - Moskalik, Mikhail Yu A1 - Astakhova, Vera V. A1 - Schilde, Uwe T1 - Novel design of 3,8-diazabicyclo[3.2.1]octane framework in oxidative sulfonamidation of 1,5-hexadiene JF - Tetrahedron N2 - 1,5-Hexadiene reacts with trifluoromethanesulfonamide in the oxidative system (t-BuOCl+Nal) to give trans-2,5-bis(iodomethyl)-1-(trifluoromethylsulfonyl)pyrrolidine 5 and 3,8-bis(trifluoromethylsulfonyl)-3,8-diazabicyclo[3.2.1]octane 6. With arenesulfonamides ArSO2NH2 (Ar=Ph, Tol), the reaction stops at the formation of the trans and cis isomers of 2,5-bis(iodomethyl)-1-(arenesulfonyl)pyrrolidine 7 and 8 (1:1). The cis isomers of 7 and 8 do not undergo cyclization to the corresponding 3,8-disubstituted 3,8-diazabicyclo[3.2.1]octanes. The reaction with triflamide represents the first example of one-pot two-step route to 3,8-diazabicyclo[3.2.1]octane system. (C) 2014 Elsevier Ltd. All rights reserved. KW - Trifluoromethanesulfonamide KW - Arenesulfonamides KW - 1,5-Dienes KW - Cycloaddition KW - 3,8-Diazabicyclo[3.2.1]octane KW - X-ray Y1 - 2014 U6 - https://doi.org/10.1016/j.tet.2014.04.095 SN - 0040-4020 VL - 70 IS - 30 SP - 4547 EP - 4551 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Riebe, Daniel A1 - Eder, Alexander A1 - Ritschel, Thomas A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd A1 - Beil, Andreas A1 - Blaschke, Michael A1 - Ludwig, Thomas T1 - Atmospheric pressure chemical ionization of explosives induced by soft X-radiation in ion mobility spectrometry: mass spectrometric investigation of the ionization reactions of drift gasses, dopants and alkyl nitrates JF - Journal of mass spectrometr N2 - A promising replacement for the radioactive sources commonly encountered in ion mobility spectrometers is a miniaturized, energy-efficient photoionization source that produce the reactant ions via soft X-radiation (2.8 keV). In order to successfully apply the photoionization source, it is imperative to know the spectrum of reactant ions and the subsequent ionization reactions leading to the detection of analytes. To that end, an ionization chamber based on the photoionization source that reproduces the ionization processes in the ion mobility spectrometer and facilitates efficient transfer of the product ions into a mass spectrometer was developed. Photoionization of pure gasses and gas mixtures containing air, N-2, CO2 and N2O and the dopant CH2Cl2 is discussed. The main product ions of photoionization are identified and compared with the spectrum of reactant ions formed by radioactive and corona discharge sources on the basis of literature data. The results suggest that photoionization by soft X-radiation in the negative mode is more selective than the other sources. In air, adduct ions of O-2 - with H2O and CO2 were exclusively detected. Traces of CO2 impact the formation of adduct ions of O-2 - and Cl -(upon addition of dopant) and are capable of suppressing them almost completely at high CO2 concentrations. Additionally, the ionization products of four alkyl nitrates (ethylene glycol dinitrate, nitroglycerin, erythritol tetranitrate and pentaerythritol tetranitrate) formed by atmospheric pressure chemical ionization induced by X-ray photoionization in different gasses (air, N-2 and N2O) and dopants (CH2Cl2, C2H5Br and CH3I) are investigated. The experimental studies are complemented by density functional theory calculations of the most important adduct ions of the alkyl nitrates (M) used for their spectrometric identification. In addition to the adduct ions [M + NO3](-) and [M + Cl](-), adduct ions such as [M + N2O2](-), [M + Br](-) and [M+ I](-) were detected, and their gas-phase structures and energetics are investigated by density functional theory calculations. Copyright (C) 2016 John Wiley & Sons, Ltd. KW - ion mobility spectrometry KW - mass spectrometry KW - explosives KW - X-ray KW - photoionization KW - alkyl nitrates Y1 - 2016 U6 - https://doi.org/10.1002/jms.3784 SN - 1076-5174 SN - 1096-9888 VL - 51 SP - 566 EP - 577 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Schulz, Christian A1 - Lieutenant, Klaus A1 - Xiao, Jie A1 - Hofmann, Tommy A1 - Wong, Deniz A1 - Habicht, Klaus T1 - Characterization of the soft X-ray spectrometer PEAXIS at BESSY II JF - Journal of synchrotron radiation N2 - The performance of the recently commissioned spectrometer PEAXIS for resonant inelastic soft X-ray scattering (RIXS) and X-ray photoelectron spectroscopy and its hosting beamline U41-PEAXIS at the BESSY II synchrotron are characterized. The beamline provides linearly polarized light from 180 eV to 1600 eV allowing for RIXS measurements in the range 200-1200 eV. The monochromator optics can be operated in different configurations to provide either high flux with up to 10(12) photons s(-1) within the focal spot at the sample or high energy resolution with a full width at half maximum of <40 meV at an incident photon energy of similar to 400 eV. The measured total energy resolution of the RIXS spectrometer is in very good agreement with theoretically predicted values obtained by ray-tracing simulations. PEAXIS features a 5 m-long RIXS spectrometer arm that can be continuously rotated about the sample position by 106 degrees within the horizontal photon scattering plane, thus enabling the study of momentum-transfer-dependent excitations. Selected scientific examples are presented to demonstrate the instrument capabilities, including measurements of excitations in single-crystalline NiO and in liquid acetone employing a fluid cell sample manipulator. Planned upgrades of the beamline and the RIXS spectrometer to further increase the energy resolution to similar to 100 meV at 1000 eV incident photon energy are discussed. KW - resonant inelastic X-ray scattering KW - X-ray photoelectron spectroscopy KW - soft X-ray spectroscopy KW - soft X-ray beamline KW - X-ray emission KW - X-ray KW - absorption KW - BESSY II Y1 - 2020 U6 - https://doi.org/10.1107/S1600577519014887 SN - 1600-5775 VL - 27 SP - 238 EP - 249 PB - International Union of Crystallography CY - Chester ER - TY - JOUR A1 - Lever, Fabiano A1 - Mayer, Dennis A1 - Metje, Jan A1 - Alisauskas, Skirmantas A1 - Calegari, Francesca A1 - Düsterer, Stefan A1 - Feifel, Raimund A1 - Niebuhr, Mario A1 - Manschwetus, Bastian A1 - Kuhlmann, Marion A1 - Mazza, Tommaso A1 - Robinson, Matthew Scott A1 - Squibb, Richard J. A1 - Trabattoni, Andrea A1 - Wallner, Måns A1 - Wolf, Thomas J. A. A1 - Gühr, Markus T1 - Core-level spectroscopy of 2-thiouracil at the sulfur L1 and L2,3 edges utilizing a SASE free-electron-laser JF - Molecules N2 - In this paper, we report X-ray absorption and core-level electron spectra of the nucleobase derivative 2-thiouracil at the sulfur L1- and L2,3-edges. We used soft X-rays from the free-electron laser FLASH2 for the excitation of isolated molecules and dispersed the outgoing electrons with a magnetic bottle spectrometer. We identified photoelectrons from the 2p core orbital, accompanied by an electron correlation satellite, as well as resonant and non-resonant Coster–Kronig and Auger–Meitner emission at the L1- and L2,3-edges, respectively. We used the electron yield to construct X-ray absorption spectra at the two edges. The experimental data obtained are put in the context of the literature currently available on sulfur core-level and 2-thiouracil spectroscopy. KW - X-ray KW - photoelectron KW - sulfur KW - thiouracil KW - nucleobases KW - Coster–Kronig KW - Auger–Meitner KW - NEXAFS KW - FLASH Y1 - 2021 SN - 1420-3049 VL - 26 IS - 21 PB - MDPI CY - Basel ER - TY - JOUR A1 - Ziegler, Joceline A1 - Pfitzner, Bjarne A1 - Schulz, Heinrich A1 - Saalbach, Axel A1 - Arnrich, Bert T1 - Defending against Reconstruction Attacks through Differentially Private Federated Learning for Classification of Heterogeneous Chest X-ray Data JF - Sensors N2 - Privacy regulations and the physical distribution of heterogeneous data are often primary concerns for the development of deep learning models in a medical context. This paper evaluates the feasibility of differentially private federated learning for chest X-ray classification as a defense against data privacy attacks. To the best of our knowledge, we are the first to directly compare the impact of differentially private training on two different neural network architectures, DenseNet121 and ResNet50. Extending the federated learning environments previously analyzed in terms of privacy, we simulated a heterogeneous and imbalanced federated setting by distributing images from the public CheXpert and Mendeley chest X-ray datasets unevenly among 36 clients. Both non-private baseline models achieved an area under the receiver operating characteristic curve (AUC) of 0.940.94 on the binary classification task of detecting the presence of a medical finding. We demonstrate that both model architectures are vulnerable to privacy violation by applying image reconstruction attacks to local model updates from individual clients. The attack was particularly successful during later training stages. To mitigate the risk of a privacy breach, we integrated Rényi differential privacy with a Gaussian noise mechanism into local model training. We evaluate model performance and attack vulnerability for privacy budgets ε∈{1,3,6,10}�∈{1,3,6,10}. The DenseNet121 achieved the best utility-privacy trade-off with an AUC of 0.940.94 for ε=6�=6. Model performance deteriorated slightly for individual clients compared to the non-private baseline. The ResNet50 only reached an AUC of 0.760.76 in the same privacy setting. Its performance was inferior to that of the DenseNet121 for all considered privacy constraints, suggesting that the DenseNet121 architecture is more robust to differentially private training. KW - federated learning KW - privacy and security KW - privacy attack KW - X-ray Y1 - 2022 U6 - https://doi.org/10.3390/s22145195 SN - 1424-8220 VL - 22 PB - MDPI CY - Basel, Schweiz ET - 14 ER - TY - JOUR A1 - Oster, Simon A1 - Fritsch, Tobias A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Bruno, Giovanni A1 - Maierhofer, Christiane A1 - Altenburg, Simon T1 - On the registration of thermographic in situ monitoring data and computed tomography reference data in the scope of defect prediction in laser powder bed fusion JF - Metals : open access journal N2 - The detection of internal irregularities is crucial for quality assessment in metal-based additive manufacturing (AM) technologies such as laser powder bed fusion (L-PBF). The utilization of in-process thermography as an in situ monitoring tool in combination with post-process X-ray micro computed tomography (XCT) as a reference technique has shown great potential for this aim. Due to the small irregularity dimensions, a precise registration of the datasets is necessary as a requirement for correlation. In this study, the registration of thermography and XCT reference datasets of a cylindric specimen containing keyhole pores is carried out for the development of a porosity prediction model. The considered datasets show variations in shape, data type and dimensionality, especially due to shrinkage and material elevation effects present in the manufactured part. Since the resulting deformations are challenging for registration, a novel preprocessing methodology is introduced that involves an adaptive volume adjustment algorithm which is based on the porosity distribution in the specimen. Thus, the implementation of a simple three-dimensional image-to-image registration is enabled. The results demonstrate the influence of the part deformation on the resulting porosity location and the importance of registration in terms of irregularity prediction. KW - selective laser melting (SLM) KW - laser powder bed fusion (L-PBF) KW - additive KW - manufacturing (AM) KW - process monitoring KW - infrared thermography KW - X-ray KW - micro computed tomography (XCT) KW - defect detection KW - image registration Y1 - 2022 U6 - https://doi.org/10.3390/met12060947 SN - 2075-4701 VL - 12 IS - 6 PB - MDPI CY - Basel ER -