TY - JOUR A1 - Bianco, Pier Giorgio A1 - Ketmaier, Valerio T1 - A revision of the Rutilus complex from Mediterranean Europe with description of a new genus, Sarmarutilus, and a new species, Rutilus stoumboudae (Teleostei: Cyprinidae) JF - Zootaxa : an international journal of zootaxonomy ; a rapid international journal for animal taxonomists N2 - By combining morphology, ecology, biology, and biogeography with the available molecular (sequence variation of the entire mitochondrial cytochrome b gene; cyt-b) and karyology data, the taxonomy of several species of the Rutilus complex inhabiting southern Europe is revised. Rutilus stoumboudae, new species, is described from Lake Volvi, Greece. It differs from Rutilus rutilus in possessing more total GR and less branched rays in both dorsal and anal fins and in its placement in the cyt-b based phylogeny of the genus. The resurrected genus Leucos Heckel, 1843 (type species Leucos aula, Bonaparte, 1841), which according to molecular data diverged from Rutilus more than 5 million years ago, during the Messinian salinity crisis, includes five species of small size, without spinous tubercles on scales and head in reproductive males, pharyngeal teeth formula 5-5, and all show a preference for still waters. Leucos aula is the Italian species endemic in the Padany-Venetian district: L. basak is widespread in Croatia, Albania, Montenegro and former Yugoslav Republic of Macedonia (FYROM); L. albus, recently described from Lake Skadar, Montenegro, is also found in rivers Moraca and Zeta (Montenegro). L. albus differs from L. basak, its closest relative, in having more scales on the LL and less anal-fin rays; L. panosi is endemic to the western-Greece district, and L. ylikiensis is endemic to lakes Yliki and Paralimni in eastern Greece (introduced in Lake Volvi). Among the nominal species examined, Rutilus karamani, R. ohridanus, R. prespensis and R. prespensis vukovici are all junior synonyms of Leucos basak. Rutilus vegariticus is definitively regarded as junior synonym for R. rutilus. Sarmarutilus n.gen. is a monotypic genus, with Sarmarutilus rubilio as the type species. According to phylogenetic data, Sarmarutilus rubilio is basal to a cluster of species that includes Leucos basak, L. albus, L. aula, L. panosi and L. ylikiensis. Sarmarutilus possibly evolved in pre-Messinian time, in the Lago Mare, entered the Mediterranean area during the Messinian Lago Mare phase of the Mediterranean Sea and survived only in the Tuscany-Latium district. This genus differs from Leucos in having large pearl organs on the central part of head and body scales in mature males and for the habitat preference, being a riverine-adapted species. It differs from Rutilus in pharyngeal teeth formula (5-5 in Sarmarutilus and 6-5 in Rutilus), size (small in Sarmarutilus and large in Rutilus) and for the preferential habitat (riverine vs. still water). Finally, lectotypes for Leucos basak, Leucos aula, and Sarmarutilus rubilio are designated. KW - Freshwater fish KW - Mediterranean Europe KW - Cyprinidae KW - genera Rutilus KW - Leucos KW - Sarmarutilus new genus KW - new species Y1 - 2014 SN - 1175-5326 SN - 1175-5334 VL - 3841 IS - 3 SP - 379 EP - 402 PB - Magnolia Press CY - Auckland ER - TY - JOUR A1 - Markovic, Danijela A1 - Walz, Ariane A1 - Kärcher, Oskar T1 - Scale effects on the performance of niche-based models of freshwater fish distributions: Local vs. upstream area influences JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - Niche-based species distribution models (SDMs) play a central role in studying species response to environmental change. Effective management and conservation plans for freshwater ecosystems require SDMs that accommodate hierarchical catchment ordering and provide clarity on the performance of such models across multiple scales. The scale-dependence components considered here are: (a) environment spatial structure, represented by hierarchical catchment ordering following the Strahler system; (b) analysis grain, that included 1st to 5th order catchments; and (c) response grain, the grain at which species respond most, represented by local and upstream catchment area effects. We used fish occurrence data from the Danube River Basin and various factors representing climate, land cover and anthropogenic pressures. Our results indicate that the choice of response grain local vs. upstream area effects and the choice of analysis grain, only marginally influence the performance of SDMs. Upstream effects tend to better predict fish distributions than corresponding local effects for anthropogenic and land cover factors, in particular for species sensitive to pollution. Key predictors and their relative importance are scale and species dependent. Consequently, choosing proper species dependent spatial scales and factors is imperative for effective river rehabilitation measures. KW - Catchment order KW - Conservation planning KW - Danube KW - Freshwater fish KW - Species distribution modelling KW - Upstream area Y1 - 2019 U6 - https://doi.org/10.1016/j.ecolmodel.2019.108818 SN - 0304-3800 SN - 1872-7026 VL - 411 PB - Elsevier CY - Amsterdam ER -