TY - JOUR A1 - Bougeois, Laurie A1 - de Rafelis, Marc A1 - Reichart, Gert-Jan A1 - de Nooijer, Lennart J. A1 - Dupont-Nivet, Guillaume T1 - Mg/Ca in fossil oyster shells as palaeotemperature proxy, an example from the Palaeogene of Central Asia JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - Fossil oyster shells are well-suited to provide palaeotemperature proxies from geologic to seasonal timescales due to their ubiquitous occurrence from Triassic to Quaternary sediments, the seasonal nature of their shell growth and their relative strong resistance to post-mortem alteration. However, the common use to translate calcitic oxygen isotopes into palaeotemperatures is challenged by uncertainties in accounting for past seawater delta O-18, especially in shallow coastal environment where oysters calcify. In principle, the Mg/Ca ratio in oyster shells can provide an alternative palaeothermometer. Several studies provided temperature calibrations for this potential proxy based on modem species, nevertheless their application to palaeo-studies remains hitherto unexplored. Here, we show that past temperature variability in seawater can be obtained from Mg/Ca analyses from selected fossil oyster species and specimens. High-resolution Mg/Ca profiles, combined with delta O-18, were obtained along 41 fossil oyster shells of seven different species from the Palaeogene Proto-Paratethys sea (Central Asia) found in similar as well as different depositional age and environments providing comparison. Suitable Mg/Ca profiles, defined by continuous cyclicity and reproducibility within one shell, are found to be consistent for specimens of the same species but differ systematically between species, implying a dominant species-specific effect on the Mg/Ca signal. Two species studied here (Ostrea (Turkostrea) strictiplicata and Sokolowia buhsii) provide an excellent proxy for palaeoclimate reconstruction from China to Europe in Palaeogene marine sediments. More generally, the protocol developed here can be applied to identify other fossil oyster species suitable for palaeoclimate reconstructions. (C) 2015 Elsevier B.V. All rights reserved. KW - Palaeoclimate KW - Oyster KW - Mg/Ca KW - Sclerochronology KW - Palaeogene KW - Central Asia Y1 - 2016 U6 - https://doi.org/10.1016/j.palaeo.2015.09.052 SN - 0031-0182 SN - 1872-616X VL - 441 SP - 611 EP - 626 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bougeois, Laurie A1 - Dupont-Nivet, Guillaume A1 - de Rafelis, Marc A1 - Tindall, Julia C. A1 - Proust, Jean-Noel A1 - Reichart, Gert-Jan A1 - de Nooijer, Lennart J. A1 - Guo, Zhaojie A1 - Ormukov, Cholponbelk T1 - Asian monsoons and aridification response to Paleogene sea retreat and Neogene westerly shielding indicated by seasonality in Paratethys oysters JF - Earth and planetary science letters N2 - Asian climate patterns, characterised by highly seasonal monsoons and continentality, are thought to originate in the Eocene epoch (56 to 34 million years ago - Ma) in response to global climate, Tibetan Plateau uplift and the disappearance of the giant Proto-Paratethys sea formerly extending over Eurasia. The influence of this sea on Asian climate has hitherto not been constrained by proxy records despite being recognised as a major driver by climate models. We report here strongly seasonal records preserved in annual lamina of Eocene oysters from the Proto-Paratethys with sedimentological and numerical data showing that monsoons were not dampened by the sea and that aridification was modulated by westerly moisture sourced from the sea. Hot and arid summers despite the presence of the sea suggest a strong anticyclonic zone at Central Asian latitudes and an orographic effect from the emerging Tibetan Plateau. Westerly moisture precipitating during cold and wetter winters appear to have decreased in two steps. First in response to the late Eocene (34-37 Ma) sea retreat; second by the orogeny of the Tian Shan and Pamir ranges shielding the westerlies after 25 Ma. Paleogene sea retreat and Neogene westerly shielding thus provide two successive mechanisms forcing coeval Asian desertification and biotic crises. KW - Eocene monsoon KW - aridification KW - Paratethys sea KW - Central Asia KW - seasonality KW - bivalves Y1 - 2018 U6 - https://doi.org/10.1016/j.epsl.2017.12.036 SN - 0012-821X SN - 1385-013X VL - 485 SP - 99 EP - 110 PB - Elsevier CY - Amsterdam ER -