TY - THES A1 - Winck, Flavia Vischi T1 - Nuclear proteomics and transcription factor profiling in Chlamydomonas reinhardtii T1 - Nukleare Proteomics und Transkriptionsfaktoren : Profiling in Chlamydomonas reinhardtii N2 - The transcriptional regulation of the cellular mechanisms involves many different components and different levels of control which together contribute to fine tune the response of cells to different environmental stimuli. In some responses, diverse signaling pathways can be controlled simultaneously. One of the most important cellular processes that seem to possess multiple levels of regulation is photosynthesis. A model organism for studying photosynthesis-related processes is the unicellular green algae Chlamydomonas reinhardtii, due to advantages related to culturing, genetic manipulation and availability of genome sequence. In the present study, we were interested in understanding the regulatory mechanisms underlying photosynthesis-related processes. To achieve this goal different molecular approaches were followed. In order to indentify protein transcriptional regulators we optimized a method for isolation of nuclei and performed nuclear proteome analysis using shotgun proteomics. This analysis permitted us to improve the genome annotation previously published and to discover conserved and enriched protein motifs among the nuclear proteins. In another approach, a quantitative RT-PCR platform was established for the analysis of gene expression of predicted transcription factor (TF) and other transcriptional regulator (TR) coding genes by transcript profiling. The gene expression profiles for more than one hundred genes were monitored in time series experiments under conditions of changes in light intensity (200 µE m-2 s-1 to 700 µE m-2 s-1), and changes in concentration of carbon dioxide (5% CO2 to 0.04% CO2). The results indicate that many TF and TR genes are regulated in both environmental conditions and groups of co-regulated genes were found. Our findings also suggest that some genes can be common intermediates of light and carbon responsive regulatory pathways. These approaches together gave us new insights about the regulation of photosynthesis and revealed new candidate regulatory genes, helping to decipher the gene regulatory networks in Chlamydomonas. Further experimental studies are necessary to clarify the function of the candidate regulatory genes and to elucidate how cells coordinately regulate the assimilation of carbon and light responses. N2 - Pflanzen nutzen das Sonnenlicht um Substanzen, sogenannte Kohlenhydrate, zu synthetisieren. Diese können anschließend als Energielieferant für das eigene Wachstum genutzt werden. Der aufbauende Prozess wird als Photosynthese bezeichnet. Ein wichtiges Anliegen ist deshalb zu verstehen, wie Pflanzen äußere Einflüsse wahrnehmen und die Photosynthese dementsprechend regulieren. Ihre Zellen tragen diese Informationen in den Genen. Die Pflanzen nutzen aber in der Regel nicht alle ihre Gene gleichzeitig, die sie zur Anpassung an Umwelteinflüsse besitzen. Zu meist wird nur eine Teilfraktion der gesamten Information benötigt. Wir wollten der Frage nachgehen, welche Gene die Zellen für welche Situation regulieren. Im Zellkern gibt es Proteine, sogenannte Transkriptionsfaktoren, die spezifische Gene finden können und deren Transkription modulieren. Wenn ein Gen gebraucht wird, wird seine Information in andere Moleküle übersetzt (transkribiert), sogenannte Transkripte. Die Information dieser Transkripte wird benutzt um Proteine, Makromoleküle aus Aminsäuren, zu synthetisieren. Aus der Transkription eines Gens kann eine große Zahl des Transkripts entstehen. Es ist wahrscheinlich, dass ein Gen, dass gerade gebraucht wird, mehr Transkriptmoleküle hat als andere Gene. Da die Transkriptionsfaktoren mit der Transkription der Gene interferieren können, entwickelten wir in der vorliegenden Arbeit Strategien zur Identifikation dieser im Zellkern zu findenden Proteine mittels eines „Proteomics“-Ansatzes. Wir entwickelten weiterhin eine Strategie zur Identififikation von Transkripten Transkriptionsfaktor-codierender Gene in der Zelle und in welche Menge sie vorkommen. Dieser Ansatz wird als „Transcript-Profiling“ bezeichnet. Wir fanden Zellkern-lokalisierte Proteine, die als Signalmoleküle funktionieren könnten und Transkripte, die bei unterschiedlichen Umweltbedingungen in der Zelle vorhanden waren. Wir benutzten, die oben genannten Ansätze um die einzellige Grünalge Chlamydomonas zu untersuchen. Die Informationen, die wir erhielten, halfen zu verstehen welche Transkriptionsfaktoren notwendig sind, damit Chlamydomonas bei unterschiedlichen Umweltbedingungen, wie z.B. unterschiedliche Lichtintensitäten und unterschiedlicher Konzentration von Kohlenstoffdioxid, überlebt. KW - Proteomics KW - Transkriptionsfaktoren KW - Pflanzen KW - Chlamydomonas KW - Transcriptomics KW - Proteomics KW - Transcription factors KW - Plants KW - Chlamydomonas KW - Transcriptomics Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-53909 ER - TY - THES A1 - Oberkofler, Vicky T1 - Molecular basis of HS memory in Arabidopsis thaliana T1 - Die molekulare Basis des Hitzestress-Gedächtnisses in Arabidopsis thaliana N2 - Plants can be primed to survive the exposure to a severe heat stress (HS) by prior exposure to a mild HS. The information about the priming stimulus is maintained by the plant for several days. This maintenance of acquired thermotolerance, or HS memory, is genetically separable from the acquisition of thermotolerance itself and several specific regulatory factors have been identified in recent years. On the molecular level, HS memory correlates with two types of transcriptional memory, type I and type II, that characterize a partially overlapping subset of HS-inducible genes. Type I transcriptional memory or sustained induction refers to the sustained transcriptional induction above non-stressed expression levels of a gene for a prolonged time period after the end of the stress exposure. Type II transcriptional memory refers to an altered transcriptional response of a gene after repeated exposure to a stress of similar duration and intensity. In particular, enhanced re-induction refers to a transcriptional pattern in which a gene is induced to a significantly higher degree after the second stress exposure than after the first. This thesis describes the functional characterization of a novel positive transcriptional regulator of type I transcriptional memory, the heat shock transcription factor HSFA3, and compares it to HSFA2, a known positive regulator of type I and type II transcriptional memory. It investigates type I transcriptional memory and its dependence on HSFA2 and HSFA3 for the first time on a genome-wide level, and gives insight on the formation of heteromeric HSF complexes in response to HS. This thesis confirms the tight correlation between transcriptional memory and H3K4 hyper-methylation, reported here in a case study that aimed to reduce H3K4 hyper-methylation of the type II transcriptional memory gene APX2 by CRISPR/dCas9-mediated epigenome editing. Finally, this thesis gives insight into the requirements for a heat shock transcription factor to function as a positive regulator of transcriptional memory, both in terms of its expression profile and protein abundance after HS and the contribution of individual functional domains. In summary, this thesis contributes to a more detailed understanding of the molecular processes underlying transcriptional memory and therefore HS memory, in Arabidopsis thaliana. N2 - Pflanzen können darauf vorbereitet werden, einen schweren Hitzestress (HS) zu überleben, indem sie zuvor einem leichten HS ausgesetzt werden. Die Information über den Priming-Stimulus wird von der Pflanze mehrere Tage lang aufrechterhalten. Diese Aufrechterhaltung der erworbenen Thermotoleranz, das so genannte HS-Gedächtnis, ist genetisch vom Erwerb der Thermotoleranz selbst trennbar, und in den letzten Jahren wurden mehrere spezifische Regulierungsfaktoren identifiziert. Auf molekularer Ebene korreliert das HS-Gedächtnis mit zwei Arten von Transkriptionsgedächtnis, Typ I und Typ II, die eine sich teilweise überschneidende Untergruppe von HS-induzierbaren Genen charakterisieren. Das Transkriptionsgedächtnis vom Typ I oder die anhaltende Induktion bezieht sich auf die anhaltende Transkriptionsinduktion eines Gens über das Niveau der Expression im ungestressten Zustand hinaus über einen längeren Zeitraum nach dem Ende der Stressbelastung. Das Transkriptionsgedächtnis des Typs II bezieht sich auf eine veränderte Transkriptionsreaktion eines Gens nach wiederholter Exposition gegenüber einem Hitzestress von ähnlicher Dauer und Intensität. Insbesondere bezieht sich dabei die verstärkte Re-Induktion auf ein Transkriptionsmuster, bei dem ein Gen nach der zweiten Stressexposition in deutlich höherem Maße induziert wird als nach der ersten. Diese Arbeit beschreibt die funktionelle Charakterisierung eines neuartigen positiven Transkriptionsregulators des Typ-I-Transkriptionsgedächtnisses, des Hitzeschock-Transkriptionsfaktors HSFA3, und vergleicht ihn mit HSFA2, einem bekannten positiven Regulator des Typ-I- und Typ-II-Transkriptionsgedächtnisses. Die Arbeit untersucht das Typ-I-Transkriptionsgedächtnis und seine Abhängigkeit von HSFA2 und HSFA3 zum ersten Mal auf genomweiter Ebene und gibt Einblick in die Bildung heteromerer HSF-Komplexe als Reaktion auf HS. Diese Arbeit bestätigt den engen Zusammenhang zwischen transkriptionellem Gedächtnis und H3K4-Hypermethylierung, über den hier in einer Fallstudie berichtet wird, die darauf abzielt, die H3K4-Hypermethylierung des Typ-II-Transkriptionsgedächtnisgens APX2 durch CRISPR/dCas9-vermitteltes Epigenom-Editing zu reduzieren. Schließlich gibt diese Arbeit einen Einblick in die Anforderungen, die ein Hitzeschock-Transkriptionsfaktor erfüllen muss, damit er als positiver Regulator des Transkriptionsgedächtnisses fungieren kann, und zwar sowohl in Bezug auf sein Expressionsprofil und seine Proteinabundanz nach HS als auch in Bezug auf den Beitrag seiner einzelnen funktionellen Domänen. Zusammenfassend trägt diese Arbeit zu einem genaueren Verständnis der molekularen Prozesse bei, die dem Transkriptionsgedächtnis und damit dem HS-Gedächtnis in Arabidopsis thaliana zugrunde liegen. KW - Arabidopsis thaliana KW - abiotic stress KW - heat stress memory KW - transcription factors KW - HSF KW - epigenome editing KW - histone methylation KW - H3K4me KW - Arabidopsis thaliana KW - H3K4me KW - Hitzeschock-Transkriptionsfaktor KW - abiotischer Stress KW - Epigenom Editierung KW - Hitzestress-Gedächtnis KW - Histon Methylierung KW - Transkriptionsfaktoren Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-569544 ER - TY - THES A1 - Skirycz, Aleksandra T1 - Functional analysis of selected DOF transcription factors in the model plant Arabidopsis thaliana T1 - Funktionsanalyse ausgewählter DOF-Transkriptionsfaktoren bei der Modellpflanze Arabidopsis thaliana N2 - Transcription factors (TFs) are global regulators of gene expression playing essential roles in almost all biological processes, and are therefore of great scientific and biotechnological interest. This project focused on functional characterisation of three DNA-binding-with-one-zinc-finger (DOF) TFs from the genetic model plant Arabidopsis thaliana, namely OBP1, OBP2 and AtDOF4;2. These genes were selected due to severe growth phenotypes conferred upon their constitutive over-expression. To identify biological processes regulated by OBP1, OBP2 and AtDOF4;2 in detail molecular and physiological characterization of transgenic plants with modified levels of OBP1, OBP2 and AtDOF4;2 expression (constitutive and inducible over-expression, RNAi) was performed using both targeted and profiling technologies. Additionally expression patterns of studied TFs and their target genes were analyzed using promoter-GUS lines and publicly available microarray data. Finally selected target genes were confirmed by chromatin immuno-precipitation and electrophoretic-mobility shift assays. This combinatorial approach revealed distinct biological functions of OBP1, OBP2 and AtDOF4;2. Specifically OBP2 controls indole glucosinolate / auxin homeostasis by directly regulating the enzyme at the branch of these pathways; CYP83B1 (Skirycz et al., 2006). Glucosinolates are secondary compounds important for defence against herbivores and pathogens in the plants order Caparales (e.g. Arabidopsis, canola and broccoli) whilst auxin is an essential plant hormone. Hence OBP2 is important for both response to biotic stress and plant growth. Similarly to OBP2 also AtDOF4;2 is involved in the regulation of plant secondary metabolism and affects production of various phenylpropanoid compounds in a tissue and environmental specific manner. It was found that under certain stress conditions AtDOF4;2 negatively regulates flavonoid biosynthetic genes whilst in certain tissues it activates hydroxycinnamic acid production. It was hypothesized that this dual function is most likely related to specific interactions with other proteins; perhaps other TFs (Skirycz et al., 2007). Finally OBP1 regulates both cell proliferation and cell expansion. It was shown that OBP1 controls cell cycle activity by directly targeting the expression of core cell cycle genes (CYCD3;3 and KRP7), other TFs and components of the replication machinery. Evidence for OBP1 mediated activation of cell cycle during embryogenesis and germination will be presented. Additionally and independently on its effects on cell proliferation OBP1 negatively affects cell expansion via reduced expression of cell wall loosening enzymes. Summing up this work provides an important input into our knowledge on DOF TFs function. Future work will concentrate on establishing exact regulatory networks of OBP1, OBP2 and AtDOF4;2 and their possible biotechnological applications. N2 - Biologische Prozesse, wie beispielsweise das Wachstum von Organen und ganzen Organismen oder die Reaktion von Lebewesen auf ungünstige Umweltbedingungen, unterliegen zahlreichen Regulationsmechanismen. Besonders wichtige Regulatoren sind die sogenannten Transkriptionsfaktoren. Dabei handelt es sich um Proteine, die die Aktivität von Erbeinheiten, den Genen, beeinflussen. In Pflanzen gibt es etwa 2000 solcher Regulatoren. Da sie wichtige Kontrollelemente darstellen, sind sie von großem wissenschaftlichen und biotechnologischen Interesse. Im Rahmen der Doktorarbeit sollte die Funktion von drei Transkriptionsfaktoren, genannt OBP1, OBP2 und AtDOF4;2, untersucht werden. Sie wurden bei der Suche nach neuen Wachstumsregulatoren identifiziert. Als Untersuchungsobjekt diente die in der Öffentlichkeit kaum bekannte Pflanze Ackerschmalwand, lateinisch als Arabidopsis thaliana bezeichnet. Um die Funktion der Regulatoren zu entschlüsseln, wurden an der Modellpflanze genetische Veränderungen durchgeführt und die Pflanzen dann mit molekularbiologischen und physiologischen Methoden analysiert. Es zeigte sich, dass OBP1 an der Regulation der Zellteilung beteiligt ist. Alle Lebewesen sind aus Zellen aufgebaut. Gelingt es, die Zellteilung gezielt zu steuern, kann damit beispielsweise die Produktion von pflanzlicher Biomasse verbessert werden. Das OBP1-Protein übt auch einen Einfluss auf die Zellstreckung aus und beeinflusst auch auf diesem Wege das pflanzliche Wachstum. Die beiden anderen Proteine steuern Prozesse, die im Zusammenhang mit der Bildung von Pflanzeninhaltsstoffen stehen. OBP2 ist Teil eines zellulären Netzwerkes, dass die Synthese von sogenannten Glucosinolaten steuert. Glucosinolate kommen unter anderem in Broccoli und Kohl vor. Sie fungieren als Abwehrstoffe gegen Fraßinsekten. Einigen Glucosinolaten wird auch gesundheitsfördernde Wirkung zugesprochen. Das Protein AtDOF4;2 ist Komponente eines anderen Netzwerkes, dass die Bildung von Phenylpropanoiden steuert. Diese Substanzen haben strukturelle Funktion und spielen darüber hinaus eine Rolle bei der pflanzlichen Toleranz gegenüber tiefen Temperaturen. Mit der Doktorarbeit konnte das Wissen über die Transkriptionsfaktoren erheblich erweitert und die Grundlage für interessante zukünftige Arbeiten gelegt werden. Von großer Bedeutung wird es dabei sein, die Netzwerke, in die die Transkriptionsfaktoren eingebunden sind, noch besser zu verstehen. Dann wird es möglich sein, auch Teilnetzwerke gezielt zu beeinflussen, was für biotechnologische Anwendungen, beispielsweise bei der Präzisionszüchtung von nachwachsenden Rohstoffen, von zentraler Bedeutung ist. KW - Transkriptionsfaktoren KW - Arabidopsis thaliana KW - transcription factors KW - Arabidopsis thaliana KW - cell cycle KW - secondary metabolism Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-16987 ER - TY - THES A1 - Lotkowska, Magda Ewa T1 - Functional analysis of MYB112 transcription factor in the model plant Arabidopsis thaliana T1 - Funktionelle Charakterisierung von MYB112 Transkriptionsfaktor aus der Modellpflanze Arabidopsis thaliana N2 - Transcription factors (TFs) are ubiquitous gene expression regulators and play essential roles in almost all biological processes. This Ph.D. project is primarily focused on the functional characterisation of MYB112 - a member of the R2R3-MYB TF family from the model plant Arabidopsis thaliana. This gene was selected due to its increased expression during senescence based on previous qRT-PCR expression profiling experiments of 1880 TFs in Arabidopsis leaves at three developmental stages (15 mm leaf, 30 mm leaf and 20% yellowing leaf). MYB112 promoter GUS fusion lines were generated to further investigate the expression pattern of MYB112. Employing transgenic approaches in combination with metabolomics and transcriptomics we demonstrate that MYB112 exerts a major role in regulation of plant flavonoid metabolism. We report enhanced and impaired anthocyanin accumulation in MYB112 overexpressors and MYB112-deficient mutants, respectively. Expression profiling reveals that MYB112 acts as a positive regulator of the transcription factor PAP1 leading to increased anthocyanin biosynthesis, and as a negative regulator of MYB12 and MYB111, which both control flavonol biosynthesis. We also identify MYB112 early responsive genes using a combination of several approaches. These include gene expression profiling (Affymetrix ATH1 micro-arrays and qRT-PCR) and transactivation assays in leaf mesophyll cell protoplasts. We show that MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C)CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation coupled to qPCR (ChIP-qPCR) we demonstrate that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters revealing them as direct downstream target genes. MYB TFs were previously reported to play an important role in controlling flavonoid biosynthesis in plants. Many factors acting upstream of the anthocyanin biosynthesis pathway show enhanced expression levels during nitrogen limitation, or elevated sucrose content. In addition to the mentioned conditions, other environmental parameters including salinity or high light stress may trigger anthocyanin accumulation. In contrast to several other MYB TFs affecting anthocyanin biosynthesis pathway genes, MYB112 expression is not controlled by nitrogen limitation, or carbon excess, but rather is stimulated by salinity and high light stress. Thus, MYB112 constitutes a previously uncharacterised regulatory factor that modifies anthocyanin accumulation under conditions of abiotic stress. N2 - Transkriptionsfaktoren (TFs) sind ubiquitäre Regulatoren der Genexpression und spielen eine essentielle Rolle in nahezu allen biologischen Prozessen. Diese Doktorarbeit hat vor allem die funktionelle Charakterisierung von MYB112 zum Thema, einem Mitglied der R2R3-MYB-TF-Familie aus der Modellpflanze Arabidopsis thaliana. Ausgesucht wurde das Gen aufgrund seiner erhöhten Expression in seneszenten Blättern, basierend auf vorangegangenen qRT-PCR Expressions-Profiling Experimenten für 1880 TFs in Arabidopsis Blättern aus drei Entwicklungsstadien (15 mm Blatt, 30 mm Blatt und 20 % vergilbtes Blatt). MYB112-Promotor-GUS-Fusionslinien wurden generiert um das Expressionsmuster von MYB112 detailliert zu untersuchen. Unter Zuhilfenahme transgener Ansätze in Kombination mit Metabolomics und Transcriptomics können wir zeigen, dass MYB112 eine wichtige Rolle in der Regulation des pflanzlichen Flavonoid-Metabolismus spielt. In MYB112 Überexpressoren und MYB112-defizienten Mutanten kommt es zu erhöhter bzw. verminderter Anthocyanin-Akkumulation. Expressions-Profiling zeigt, dass MYB112 einerseits als ein positiver Regulator des Transkriptionsfaktors PAP1 fungiert, was zu einer erhöhten Anthocyanin-Biosynthese führt, andererseits als negativer Regulator von MYB12 und MYB111 auftritt, welche beide die Flavonol-Biosynthese kontrollieren. Wir haben früh auf MYB112 reagierende Gene durch eine Kombination verschiedener Ansätze identifiziert. Diese umfassen Genexpressions-Profiling (Affymetrix ATH1 Microarrays und qRT-PCR) und Transaktivierungs-Experimente in Mesophyll-Protoplasten aus Blättern. Wir zeigen, dass MYB112 an eine 8-bp DNA-Fragment, welches die Kernsequenz (A/T/G)(A/C)CC(A/T)(A/G/T)(A/C)(T/C) aufweist. Mit Hilfe von Electrophoretic Mobility Shift Assay (EMSA) und Chromatin-Immunopräzipitation gekoppelt mit qPCR (ChIP-qPCR) zeigen wir, dass MYB112 in vitro und in vivo an die Promotoren von MYB7 und MYB32 bindet was sie damit als direkte Zielgene von MYB112 identifiziert. Es wurde bereits gezeigt, dass MYB TFs eine wichtige Rolle bei der Kontrolle der Flavonoid-Biosynthese in Pflanzen haben. Viele Faktoren, die oberhalb des Anthocyanin-Biosyntheseweges agieren, werden bei Stickstofflimitierung oder erhöhter Saccharose-Konzentration auch verstärkt exprimiert. Außer den erwähnten Bedingungen können auch andere Umweltparameter, wie z. B. erhöhter Salzgehalt und Starklicht zu erhöhter Expression führen. Im Gegensatz jedoch zu einigen anderen MYB TFs, die einen Einfluss auf Gene des Anthocyanin-Biosyntheseweges ausüben, ist die Expression von MYB112 nicht durch Stickstoff-Limitierung oder Kohlenstoffüberfluss kontrolliert, sondern wird durch erhöhten Salzgehalt sowie Starklicht stimuliert. Somit ist MYB112 ein neuer Regulator, der eine Anthocyanin-Akkumulation unter abiotischen Stressbedingungen kontrolliert. KW - Transkriptionsfaktoren KW - Flavonoid-Metabolismus KW - Stress KW - Transaktivierungs-Experimente KW - Chromatin-Immunopräzipitation KW - transcription factors KW - flavonoid biosynthesis KW - stress KW - transactivation assay KW - chromatin immunoprecipitation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-72131 ER - TY - THES A1 - Guedes Corrêa, Luiz Gustavo T1 - Evolutionary and functional analysis of transcription factors controlling leaf development T1 - Evolutionäre und funktionelle Analyse von Transkriptionsfaktoren, welche die Blattentwicklung steuern N2 - Leaves are the main photosynthetic organs of vascular plants, and leaf development is dependent on a proper control of gene expression. Transcription factors (TFs) are global regulators of gene expression that play essential roles in almost all biological processes among eukaryotes. This PhD project focused on the characterization of the sink-to-source transition of Arabidopsis leaves and on the analysis of TFs that play a role in early leaf development. The sink-to-source transition occurs when the young emerging leaves (net carbon importers) acquire a positive photosynthetic balance and start exporting photoassimilates. We have established molecular and physiological markers (i.e., CAB1 and CAB2 expression levels, AtSUC2 and AtCHoR expression patterns, chlorophyll and starch levels, and photosynthetic electron transport rates) to identify the starting point of the transition, especially because the sink-to-source is not accompanied by a visual phenotype in contrast to other developmental transitions, such as the mature-to-senescent transition of leaves. The sink-to-source transition can be divided into two different processes: one light dependent, related to photosynthesis and light responses; and one light independent or impaired, related to the changes in the vascular tissue that occur when leaves change from an import to an export mode. Furthermore, starch, but not sucrose, has been identified as one of the potential signalling molecules for this transition. The expression level of 1880 TFs during early leaf development was assessed by qRTPCR, and 153 TFs were found to exhibit differential expression levels of at least 5-fold. GRF, MYB and SRS are TF families, which are overrepresented among the differentially expressed TFs. Additionally, processes like cell identity acquisition, formation of the epidermis and leaf development are overrepresented among the differentially expressed TFs, which helps to validate the results obtained. Two of these TFs were further characterized. bZIP21 is a gene up-regulated during the sink-to-source and mature-to-senescent transitions. Its expression pattern in leaves overlaps with the one observed for AtCHoR, therefore it constitutes a good marker for the sink-to-source transition. Homozygous null mutants of bZIP21 could not be obtained, indicating that the total absence of bZIP21 function may be lethal to the plant. Phylogenetic analyses indicate that bZIP21 is an orthologue of Liguleless2 from maize. In these analyses, we identified that the whole set of bZIPs in plants originated from four founder genes, and that all bZIPs from angiosperms can be classified into 13 groups of homologues and 34 Possible Groups of Orthologues (PoGOs). bHLH64 is a gene highly expressed in early sink leaves, its expression is downregulated during the mature-to-senescent transition. Null mutants of bHLH64 are characterized by delayed bolting when compared to the wild-type; this indicates a possible delay in the sink-to-source transition or the retention of a juvenile identity. A third TF, Dof4, was also characterized. Dof4 is neither differentially expressed during the sink-to-source nor during the senescent-to-mature transition, but a null mutant of Dof4 develops bigger leaves than the wild-type and forms a greater number of siliques. The Dof4 null mutant has proven to be a good background for biomass accumulation analysis. Though not overrepresented during the sink-to-source transition, NAC transcription factors seem to contribute significantly to the mature-to-senescent transition. Twenty two NACs from Arabidopsis and 44 from rice are differentially expressed during late stages of leaf development. Phylogenetic analyses revealed that most of these NACs cluster into three big groups of homologues, indicating functional conservation between eudicots and monocots. To prove functional conservation of orthologues, the expression of ten NAC genes of barley was analysed. Eight of the ten NAC genes were found to be differentially expressed during senescence. The use of evolutionary approaches combined with functional studies is thus expected to support the transfer of current knowledge of gene control gained in model species to crops. N2 - Das Blatt ist das wichtigste photosynthetische Organ von Gefäßpflanzen und die Blattentwicklung ist von einer exakten Genexpression abhängig. Transkriptionsfaktoren (TFs) sind globale Regulatoren der Genexpression. Diese sind, in fast allen biologischen Vorgängen der Eukaryoten, von grundlegender Bedeutung. Das Promotionsarbeit legte den Schwerpunkt auf den sogenannten Sink-source-Übergang in Blättern der Modellpflanze Arabidopsis thaliana, zu deutsch Ackerschmalwand. Ein besonderer Fokus lag dabei auf der Analyse von TFs, welche eine wichtige Rolle in der frühen Blattentwicklung spielen. Sehr junge Blätter befinden sich im sogenannten Sink-Status, sie müssen Photoassimilate aus älteren, sogenannten Source-Blättern importieren, da sie selbst noch nicht in der Lage sind, hinreichend viel Kohlendioxid über die Photosynthese zu binden. Der Übergang vom Sink- in den Source-Zustand eines Blattes ist ein hoch komplizierter biologischer Prozess, der bisher nur in Ansätzen verstanden ist. Im Rahmen der Doktorarbeit wurden molekulare und physiologische Marker identifiziert, die es erlauben, den für das bloße Auge nicht ohne weiteres sichtbaren Sink-Source-Übergang zu erkennen. Dazu wurde beispielsweise die Aktivität bestimmter Gene, unter anderem der Gene AtSUC2 und AtCHoR, mittels molekularer Techniken verfolgt. Um den Über zwischen den beiden Entwicklungszuständen eingehend zu charakterisieren wurde die Aktivität von etwa 1900 Regulatorgenen mittels eines multiparallelen Verfahrens - der sogenannten quantitativen RT-PCR - untersucht. Bei den Regulatoren handelt es sich um Transkriptionsfaktoren, die die Aktivität anderer Gene der Pflanzen steuern. Von allen untersuchten Genen zeigten 153 ein vom Blattstadium abhängiges Aktivitätsmuster. Dabei waren Mitglieder der GRF, MYB und SRS Familien überrepräsentiert. Für die gefundenen Transkriptionsfaktoren zeigte sich besonders häufig eine Assoziation zu Prozessen wie Spezialisierung von Zellen, Entwicklung der Epidermis sowie der Blattentwicklung. Zwei ausgewählte Regulatorproteine - bZIP21 und bHLH64 - wurden detaillierter charakterisiert. Das bZIP21-Gen zeigte eine starke Aktivität whrend des Sink-Source-Übergangs. Sein Expressionsmuster in Blättern deckt sich mit dem für AtCHoR beobachteten Expressionsmuster, so dass bZIP21 als ein neuer Marker für die Sink-Source- Transition dienen kann. Es konnten keine homozygoten Null-Mutanten des Gens erhalten werden, was die Vermutung nahelegt, dass gänzliche Abwesenheit von bZIP21 letal fr die Pflanze sein kann. Phylogenetische Analysen ergaben, dass bZIP21 ortholog zum Gen Liguleless2 aus Mais ist. In diesen Analysen konnte gezeigt werden, dass alle pflanzlichen bZIP Transkriptionsfaktoren von vier Gründergenen abstammen und alle bZIPs der Angiospermen in 13 homologe Klassen und 34 mögliche orthologe Klassen (Possible Groups of Orthologues, PoGOs) eingeordnet werden können. Das bHLH64 Gen ist im unreifen Blatt stark aktiv und während des Alterungsprozesses herunterreguliert. Null-Mutationen von bHLH64 zeigen eine verzögerte Blütenbildung im Vergleich zum Wildtyp; dies weist auf eine mögliche Verzögerung in des Sink-SourceÜbergangs oder Aufrechterhaltung der jugendlichen Identität hin. Ein dritter Transkriptionsfaktor, Dof4, wurde ebenfalls charakterisiert. Dof4 wird weder während des Sink-Source-Übergangs noch während des Alterungsprozesses unterschiedlich exprimiert. Eine Null-Mutante von Dof4 besaß größere Blätter und eine höhere Anzahl an Schoten in Vergleich zum Wildtyp. Diese Mutanten erwiesen sich als gut geeignet fr die Analyse der Akkumulation pflanzlicher Biomasse. Obwohl während der Sink-Source Transition nicht überrepräsentiert, scheinen NAC Transkriptionsfaktoren eine große Rolle während des Alterungsprozesses zu spielen. Zweiundzwanzig NAC-Gene von Arabidopsis und 44 von Reis sind in der späten Phase der Blattentwicklung verändert exprimiert. Phylogenetische Analysen erlaubten die Einordnung der meisten dieser NACs in vier homologe Gruppen, was auf einen funktionellen Erhalt zwischen einkeimblättrigen und zweikeimblättrigen Pflanzen hinweist. Um den funktionellen Erhalt von Orthologen zu untersuchen, wurde die Expression von zehn NAC-Genen aus Gerste analysiert. Acht dieser Gene zeigten eine von der Blattalterung abhängige Expression. Die Kombination von evolutionären Analysen und funktionellen Studien könnte den Wissenstransfer von Modellpflanzen auf Getreidepflanzen in Zukunft vereinfachen. KW - Evolution KW - Transkriptionsfaktoren KW - Pflanzen KW - Entwicklung KW - Blatt KW - evolution KW - transcription factors KW - plant KW - development KW - leaf Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-40038 ER - TY - THES A1 - Demin, Paul T1 - Blaulicht-aktivierbares Proteinexpressionssystem in Saccharomyces cerevisiae T1 - Blue light-inducible protein expression system in Saccharomyces cerevisiae N2 - Synthetische Transkriptionsfaktoren bestehen wie natürliche Transkriptionsfaktoren aus einer DNA-Bindedomäne, die sich spezifisch an die Bindestellensequenz vor dem Ziel-Gen anlagert, und einer Aktivierungsdomäne, die die Transkriptionsmaschinerie rekrutiert, sodass das Zielgen exprimiert wird. Der Unterschied zu den natürlichen Transkriptionsfaktoren ist, sowohl dass die DNA-Bindedomäne als auch die Aktivierungsdomäne wirtsfremd sein können und dadurch künstliche Stoffwechselwege im Wirt, größtenteils chemisch, induziert werden können. Optogenetische synthetische Transkriptionsfaktoren, die hier entwickelt wurden, gehen einen Schritt weiter. Dabei ist die DNA-Bindedomäne nicht mehr an die Aktivierungsdomäne, sondern mit dem Blaulicht-Photorezeptor CRY2 gekoppelt. Die Aktivierungsdomäne wurde mit dem Interaktionspartner CIB1 fusioniert. Unter Blaulichtbestrahlung dimerisieren CRY2 und CIB1 und damit einhergehend die beiden Domänen, sodass ein funktionsfähiger Transkriptionsfaktor entsteht. Dieses System wurde in die Saccharomyces cerevisiae genomisch integriert. Verifiziert wurde das konstruierte System mit Hilfe des Reporters yEGFP, welcher durchflusszytometrisch detektiert werden konnte. Es konnte gezeigt werden, dass die yEGFP Expression variabel gestaltet werden kann, indem unterschiedlich lange Blaulichtimpulse ausgesendet wurden, die DNA-Bindedomäne, die Aktivierungsdomäne oder die Anzahl der Bindestellen, an dem sich die DNA-Bindedomäne anlagert, verändert wurden. Um das System für industrielle Anwendungen attraktiv zu gestalten, wurde das System vom Deepwell-Maßstab auf Photobioreaktor-Maßstab hochskaliert. Außerdem erwies sich das Blaulichtsystem sowohl im Laborstamm YPH500 als auch im industriell oft verwendeten Hefestamm CEN.PK als funktional. Des Weiteren konnte ein industrierelevante Protein ebenso mit Hilfe des verifizierten Systems exprimiert werden. Schlussendlich konnte in dieser Arbeit das etablierte Blaulicht-System erfolgreich mit einem Rotlichtsystem kombiniert werden, was zuvor noch nicht beschrieben wurde. N2 - Like natural transcription factors, synthetic transcription factors consist of a DNA-binding domain that attaches specifically to the binding site sequence in front of the target gene, and an activation domain that recruits the transcription machinery so that the target gene is expressed. The difference to natural transcription factors is that both the DNA binding domain and the activation domain can be host foreign and artificial metabolic pathways, mostly chemically, can be induced in the host. In this work, new optogenetic synthetic transcription factors were developed so that chemical induction becomes obsolete. The DNA binding domain is no longer linked to the activation domain but to the blue light photoreceptor CRY2. The activation domain was fused to the interaction partner CIB1. Upon blue light irradiation, CRY2 and CIB1 dimerize and thus the two domains, resulting in a functional transcription factor. Six different prokaryotic DNA-binding domains and a total of two different activation domains, viral and fungal, were recombined with CRY2 and CIB1, respectively, and genomically integrated into the eukaryotic cell factory Saccharomyces cerevisiae. Since the blue light dimerization is based on the chromophore FAD, which the yeast can synthesize itself, only the blue light had to be switched on for the induction. The constructed system was verified with the help of the reporter yEGFP, which could be detected by flow cytometry. It could be shown that the yEGFP expression could be made variable by emitting blue light pulses of different lengths, changing the DNA binding domain, the activation domain or the copy number of binding sites at which the DNA binding domain attaches. To make the system attractive for industrial applications, the system was scaled up from deepwell scale to photobioreactor scale. In addition, the blue light system proved to be functional both in the laboratory strain YPH500 and in the yeast strain CEN.PK, which is often used industrially. Furthermore, the industrially relevant protein VP1 could also be expressed using the verified system. Due to its great flexibility, the blue light system established here was christened/named FLIRT (Flexible Blue Light Induced Transcription). Finally, in this work, the established flirt system could be successfully combined with a red light system, which has not been described before. KW - Synthetische Biologie KW - Hefe KW - Saccharomyces cerevisiae KW - Blaulicht KW - Transkriptionsfaktoren KW - Bioreaktor KW - bioreactor KW - blue light KW - budding yeast KW - Saccharomyces cerevisiae KW - synthetic biology KW - transcription factors Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-559696 ER - TY - THES A1 - Bielecka, Monika T1 - Analysis of transcription factors under sulphur deficiency stress T1 - Analyse von Transkriptionsfaktoren unter Schwefelstress N2 - Sulphur, a macronutrient essential for plant growth, is among the most versatile elements in living organisms. Unfortunately, little is known about regulation of sulphate uptake and assimilation by plants. Identification of sulphate signalling processes will allow to control sulphate acquisition and assimilation and may prove useful in the future to improve sulphur-use efficiency in agriculture. Many of genes involved in sulphate metabolism are regulated on transcriptional level by products of other genes called transcription factors (TF). Several published experiments revealed TF genes that respond to sulphate deprivation, but none of these have been so far been characterized functionally. Thus, we aimed at identifying and characterising transcription factors that control sulphate metabolism in the model plant Arabidopsis thaliana. To achieve that goal we postulated that factors regulating Arabidopsis responses to inorganic sulphate deficiency change their transcriptional levels under sulphur-limited conditions. By comparing TF transcript profiles from plants grown on different sulphate regimes, we identified TF genes that may specifically induce or repress changes in expression of genes that allow plants to adapt to changes in sulphate availability. Candidate genes obtained from this screening were tested by reverse genetics approaches. Transgenic plants constitutively overproducing selected TF genes and mutant plants, lacking functional selected TF genes (knock out), were used. By comparing metabolite and transcript profiles from transgenic and wild type plants we aimed at confirming the role of selected AP2 TF candidate genes in plant adaptation to sulphur unavailability. After preliminary characterisation of WRKY24 and MYB93 TF genes, we postulate that these factors are involved in a complex multifactorial regulatory network, in which WRKY24 and MYB93 would act as superior factors regulating other transcription factors directly involved in the regulation of S-metabolism genes. Results obtained for plants overproducing TOE1 and TOE2 TF genes suggests that these factors may be involved in a mechanism, which is promoting synthesis of an essential amino acid, methionine, over synthesis of another amino acid, cysteine. Thus, TOE1 and TOE2 genes might be a part of transcriptional regulation of methionine synthesis. Approaches creating genetically manipulated plants may produce plant phenotypes of immediate biotechnological interest, such as plants with increased sulphate or sulphate-containing amino acid content, or better adapted to the sulphate unavailability. N2 - Der fuer das Pflanzenwachstum essentielle Makro-Naehrstoff Schwefel gehoert zu den vielseitigsten Elementen in lebenden Organismen. Ungluecklicherweise ist nur wenig ueber die Regulation der Schwefel Aufnahme und Assimilation von Pflanzen bekannt. Die Identifizierung von Schwefel Signalweiterleitungsprozessen wird es erlauben, die Aufnahme und Assimilation von Schwefel zu kontrollieren und koennte sich in der Zukunft als nuetzlich erweisen, die Effizienz der Schwefel Nutzung in der Landwirtschaft zu verbessern. Viele Gene, die am Schwefel Metabolismus beteiligt sind, werden auf Transkriptionsebene durch die Produkte anderer Gene, sogenannter Transkriptionsfaktoren (TF), reguliert. Mehrere veroeffentlichte Versuche beschreiben TF Gene, die auf Schwefel Mangel reagieren, es wurde jedoch bisher keines dieser Gene funktionell charakterisiert. Daher war es unser Ziel die TF, die den Schwefel Metabolismus in der Modellpflanze Arabidopsis thaliana kontrollieren, zu identifizieren und charakterisieren. Um dies zu erreichen postulierten wir, dass die Faktoren, die die Reaktion von Arabidopsis auf den Mangel an anorganischem Schwefel regulieren, das Mass ihrer Transkription unter Schwefelmangel aendern. Durch den Vergleich von TF Transkriptionsprofilen von Pflanzen, die unter verschiedenen Schwefelbedingungen aufgezogen wurden, identifizierten wir TF Gene, die moeglicherweise spezifisch Aenderungen in der Expression von Genen, die den Pflanzen erlauben sich an Aenderungen der Schwefel Verfuegbarkeit anzupassen, induzieren oder reprimieren. Die bei dieser Untersuchung erhaltenen Kandidaten Gene wurden in einen „reverse genetics“ Ansatz getestet. Es wurden transgene Pflanzen, die ausgewaehlte TF Gene konstitutiv ueberproduzieren, und Mutanten, denen ausgewaehlte funktionierende TF Gene fehlen („knock out“), benutzt. Durch den Vergleich von Metabolisten und Transkript Profilen transgener und wildtyp Pflanzen zielten wir auf die Bestaetigung der Rolle ausgewaehlter AP2 TF Kandidaten Gene bei der Anpassung an Schwefel Unverfuegbarkeit ab. Nach vorlaeufiger Charakterisierung von WRKY24 und MYB93 TF Genen postulieren wir, dass diese Faktoren an einem komplexen multifaktoriellen Regulationsnetzwerk beteiligt sind, in dem WRKY24 und MYB93 als uebergeordnete Faktoren agieren und andere TF regulieren, die direkt an der Regulation von Schwefel Metabolismus Genen beteiligt sind. Ergebnisse von Untersuchungen an Pflanzen, die TOE1 und TOE2 TF Gene ueberproduzieren deuten darauf hin, dass diese Faktoren an einem Mechanismus beteiligt sein koennten, der die Synthese einer essentiellen Aminosaeure, Methionin, zu Ungunsten der Synthese einer anderen Aminosaeure, Cystein, foerdert. Daher koennten TOE1 und TOE2 Gene Teil der transkriptionellen Regulation der Methionin Synthese sein. Die Herstellung genetisch manipulierter Pflanzen koennte Pflanzenphaenotypen erzeugen, die von sofortigem biotechnologischen Interesse sind, beispielsweise Pflanzen mit erhoehtem Gehalt an Schwefel oder schwefelhaltigen Aminosaeuren, oder Pflanzen, die besser an Schwefel Unverfuegbarkeit angepasst sind. KW - Schwefel KW - Transkriptionsfaktoren KW - Arabidopsis thaliana KW - sulphur KW - transcription factors KW - Arabidopsis thaliana Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-14812 ER - TY - THES A1 - Bortfeld, Silvia T1 - Analysis of Medicago truncatula transcription factors involved in the arbuscular mycorrhizal symbiosis T1 - Analyse von Medicago truncatula Transkriptionsfaktoren, die während der arbuskulären Mykorrhiz-Symbiose eine Rolle spielen N2 - For the first time the transcriptional reprogramming of distinct root cortex cells during the arbuscular mycorrhizal (AM) symbiosis was investigated by combining Laser Capture Mirodissection and Affymetrix GeneChip® Medicago genome array hybridization. The establishment of cryosections facilitated the isolation of high quality RNA in sufficient amounts from three different cortical cell types. The transcript profiles of arbuscule-containing cells (arb cells), non-arbuscule-containing cells (nac cells) of Rhizophagus irregularis inoculated Medicago truncatula roots and cortex cells of non-inoculated roots (cor) were successfully explored. The data gave new insights in the symbiosis-related cellular reorganization processes and indicated that already nac cells seem to be prepared for the upcoming fungal colonization. The mycorrhizal- and phosphate-dependent transcription of a GRAS TF family member (MtGras8) was detected in arb cells and mycorrhizal roots. MtGRAS shares a high sequence similarity to a GRAS TF suggested to be involved in the fungal colonization processes (MtRAM1). The function of MtGras8 was unraveled upon RNA interference- (RNAi-) mediated gene silencing. An AM symbiosis-dependent expression of a RNAi construct (MtPt4pro::gras8-RNAi) revealed a successful gene silencing of MtGras8 leading to a reduced arbuscule abundance and a higher proportion of deformed arbuscules in root with reduced transcript levels. Accordingly, MtGras8 might control the arbuscule development and life-time. The targeting of MtGras8 by the phosphate-dependent regulated miRNA5204* was discovered previously (Devers et al., 2011). Since miRNA5204* is known to be affected by phosphate, the posttranscriptional regulation might represent a link between phosphate signaling and arbuscule development. In this work, the posttranscriptional regulation was confirmed by mis-expression of miRNA5204* in M. truncatula roots. The miRNA-mediated gene silencing affects the MtGras8 transcript abundance only in the first two weeks of the AM symbiosis and the mis-expression lines seem to mimic the phenotype of MtGras8-RNAi lines. Additionally, MtGRAS8 seems to form heterodimers with NSP2 and RAM1, which are known to be key regulators of the fungal colonization process (Hirsch et al., 2009; Gobbato et al., 2012). These data indicate that MtGras8 and miRNA5204* are linked to the sym pathway and regulate the arbuscule development in phosphate-dependent manner. N2 - Die Leguminose Medicago truncatula (gehört zur Gattung des Schneckenklees) ist in der Lage sowohl eine Symbiose mit stickstofffixierenden Bakterien (Rhizobien), als auch mit Mykorrhiza-Pilzen einzugehen. Der Mykorrhiza-Pilz Rhizophagus irregularis dringt in die Wurzelrindenzellen ein und bildet Strukturen aus, die als Arbuskeln bezeichnet werden. Diese ermöglichen den Transfer von Nährstoffen, wie Phosphat in die Wurzelzellen. Die Pflanze liefert hingegen bis zu 20 % ihrer Photosyntheseprodukte an den Pilz. Da die Lebenszeit der Arbuskeln nur wenige Tage beträgt, können Wurzelrindenzellen mehrere Arbuskeln nacheinander beherbergen. Somit können neben arbuskelhaltigen, auch nicht-arbuskelhaltige Zellen in kolonisierten Wurzeln auftreten. Die nicht-arbuskelhaltigen Zellen beeinträchtigen die Sensitivität von Genregulationsanalysen, wenn die Genregulation während der Mykorrhiza-Symbiose anhand von ganzen kolonisierten Wurzeln untersucht wird. In dieser Arbeit konnte eine Zelltyp-spezifische Analyse der Genregulation von arbuskelhaltigen und nicht-arbuskelhaltigen Zellen durchgeführt, und eine Erhöhung der Sensitivität erreicht werden. Mittels Laser Capture Microdissection wurden Zellen aus Gefrierschnitten von Wurzeln isoliert. Aus den so gewonnen Zellen konnte RNA von ausreichender Qualität und Quantität extrahiert werden, um das Transkriptom der beiden Zelltypen mittels Mikroarrayhybridisierung zu untersuchen. Transkriptionsfaktoren (TFs) spielen wahrscheinlich eine Schlüsselrolle in der Umprogrammierung von Wurzelzellen während der Mykorrhiza-Symbiose. Daher wurde die Genregulation von TF-Genen in den zwei Zelltypen gezielt untersucht. Anhand von quantitativer RT-PCR und Promoter-Reporter-Fusionen wurde die differentielle Expression von mehreren TF-Transkripten in den verschiedenen Zelltypen bestätigt. Die Charakterisierung eines potentiellen GRAS TF (MtGRAS8) konnte eine stark Symbiose- und Phosphat-abhängige Induktion von Transkripten bestätigt werden. Mutanten mit verringerter MtGras8 Transkriptmenge wiesen eine verringerte Arbuskelzahl und deformierte Arbuskeln auf. MtGras8 scheint daher an der Arbuskelentwicklung beteiligt zu sein. Vorherige Experimente zeigten, dass MtGras8 Transkripte, von der Phosphat-regulierten MikroRNA5204* geschnitten werden (Devers et al., 2011). Dies konnte durch Überexpression der MikroRNA5204* in vivo bestätigt werden. Weiterhin konnten Protein-Protein-Interaktionen von MtGras8 mit bekannten GRAS TFs (NSP1, NSP2, RAM1) nachgewiesen und daraus eine Verbindung zu bekannten Symbiose-induzierten Signalkaskaden geschlossen werden. In dieser Arbeit wurde erstmals die Umprogrammierung von nicht-arbuskelhaltigen Zellen untersucht und neue Regulationselemente für die Kontrolle der Arbuskelentwicklung, wie MtGRAS8 und MikroRNA5204*, charakterisiert. KW - arbuskuläre Mykorrhiza-Symbiose KW - Transkriptionsfaktoren KW - Zelltyp-spezifisch KW - Transkriptomanalyse KW - arbuscular mycorrhizal symbiosis KW - transcription factors KW - cell type-specific KW - transcriptome analysis Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-70664 ER -