TY - THES A1 - Anders, Friedrich T1 - Disentangling the chemodynamical history of the Milky Way disc with asteroseismology and spectroscopy T1 - Die chemodynamische Entwicklung der Milchstraßenscheibe im Lichte asteroseismischer und spektroskopischer Himmelsdurchmusterungen N2 - Galaxies are among the most complex systems that can currently be modelled with a computer. A realistic simulation must take into account cosmology and gravitation as well as effects of plasma, nuclear, and particle physics that occur on very different time, length, and energy scales. The Milky Way is the ideal test bench for such simulations, because we can observe millions of its individual stars whose kinematics and chemical composition are records of the evolution of our Galaxy. Thanks to the advent of multi-object spectroscopic surveys, we can systematically study stellar populations in a much larger volume of the Milky Way. While the wealth of new data will certainly revolutionise our picture of the formation and evolution of our Galaxy and galaxies in general, the big-data era of Galactic astronomy also confronts us with new observational, theoretical, and computational challenges. This thesis aims at finding new observational constraints to test Milky-Way models, primarily based on infra-red spectroscopy from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and asteroseismic data from the CoRoT mission. We compare our findings with chemical-evolution models and more sophisticated chemodynamical simulations. In particular we use the new powerful technique of combining asteroseismic and spectroscopic observations that allows us to test the time dimension of such models for the first time. With CoRoT and APOGEE (CoRoGEE) we can infer much more precise ages for distant field red-giant stars, opening up a new window for Galactic archaeology. Another important aspect of this work is the forward-simulation approach that we pursued when interpreting these complex datasets and comparing them to chemodynamical models. The first part of the thesis contains the first chemodynamical study conducted with the APOGEE survey. Our sample comprises more than 20,000 red-giant stars located within 6 kpc from the Sun, and thus greatly enlarges the Galactic volume covered with high-resolution spectroscopic observations. Because APOGEE is much less affected by interstellar dust extinction, the sample covers the disc regions very close to the Galactic plane that are typically avoided by optical surveys. This allows us to investigate the chemo-kinematic properties of the Milky Way's thin disc outside the solar vicinity. We measure, for the first time with high-resolution data, the radial metallicity gradient of the disc as a function of distance from the Galactic plane, demonstrating that the gradient flattens and even changes its sign for mid-plane distances greater than 1 kpc. Furthermore, we detect a gap between the high- and low-[$\alpha$/Fe] sequences in the chemical-abundance diagram (associated with the thin and thick disc) that unlike in previous surveys can hardly be explained by selection effects. Using 6D kinematic information, we also present chemical-abundance diagrams cleaned from stars on kinematically hot orbits. The data allow us to confirm without doubt that the scale length of the (chemically-defined) thick disc is significantly shorter than that of the thin disc. In the second part, we present our results of the first combination of asteroseismic and spectroscopic data in the context of Galactic Archaeology. We analyse APOGEE follow-up observations of 606 solar-like oscillating red giants in two CoRoT fields close to the Galactic plane. These stars cover a large radial range of the Galactic disc (4.5 kpc $\lesssim R_{\rm Gal}\lesssim15$ kpc) and a large age baseline (0.5 Gyr $\lesssim \tau\lesssim$ 13 Gyr), allowing us to study the age- and radius-dependence of the [$\alpha$/Fe] vs. [Fe/H] distributions. We find that the age distribution of the high-[$\alpha$/Fe] sequence appears to be broader than expected from a monolithically-formed old thick disc that stopped to form stars 10 Gyr ago. In particular, we discover a significant population of apparently young, [$\alpha$/Fe]-rich stars in the CoRoGEE data whose existence cannot be explained by standard chemical-evolution models. These peculiar stars are much more abundant in the inner CoRoT field LRc01 than in the outer-disc field LRc01, suggesting that at least part of this population has a chemical-evolution rather than a stellar-evolution origin, possibly due to a peculiar chemical-enrichment history of the inner disc. We also find that strong radial migration is needed to explain the abundance of super-metal-rich stars in the outer disc. Finally, we use the CoRoGEE sample to study the time evolution of the radial metallicity gradient in the thin disc, an observable that has been the subject of observational and theoretical debate for more than 20 years. By dividing the CoRoGEE dataset into six age bins, performing a careful statistical analysis of the radial [Fe/H], [O/H], and [Mg/Fe] distributions, and accounting for the biases introduced by the observation strategy, we obtain reliable gradient measurements. The slope of the radial [Fe/H] gradient of the young red-giant population ($-0.058\pm0.008$ [stat.] $\pm0.003$ [syst.] dex/kpc) is consistent with recent Cepheid data. For the age range of $1-4$ Gyr, the gradient steepens slightly ($-0.066\pm0.007\pm0.002$ dex/kpc), before flattening again to reach a value of $\sim-0.03$ dex/kpc for stars with ages between 6 and 10 Gyr. This age dependence of the [Fe/H] gradient can be explained by a nearly constant negative [Fe/H] gradient of $\sim-0.07$ dex/kpc in the interstellar medium over the past 10 Gyr, together with stellar heating and migration. Radial migration also offers a new explanation for the puzzling observation that intermediate-age open clusters in the solar vicinity (unlike field stars) tend to have higher metallicities than their younger counterparts. We suggest that non-migrating clusters are more likely to be kinematically disrupted, which creates a bias towards high-metallicity migrators from the inner disc and may even steepen the intermediate-age cluster abundance gradient. N2 - Galaxien gehören zu den komplexesten physikalischen Systemen, die derzeit mit Computern modelliert werden können. Eine realistische Galaxiensimulation muss kosmologische Effekte genauso berücksichtigen wie die Gesetze der Plasma-, Kern-, und Teilchenphysik. Die Milchstraße ist ein ideales Labor für die Überprüfung solcher Simulationen, da moderne Teleskope die Kinematik und chemische Zusammensetzung von Millionen von Milchstraßensternen einzeln analysieren können und uns so einen Einblick in die Entstehungsgeschichte unserer Galaxie geben. Dank groß angelegter spektroskopischer Himmelsdurchmusterungen lassen sich seit Neuestem auch stellare Populationen in fernen Regionen der Milchstraße systematisch studieren. Dieser Datenreichtum hat das Potential, unseren Blick auf die Entstehung unserer kosmischen Heimat zu revolutionieren, konfrontiert die Forschung aber auch mit neuen beobachtungstechnischen, theoretischen und numerischen Herausforderungen. Das Ziel dieser Arbeit ist es, moderne numerische Modelle der Milchstraße mittels neuer Beobachtungen zu testen. Hierbei benutzen wir vor Allem Infrarotspektroskopiedaten des Apache Point Observatory Galactic Evolution Experiment (APOGEE), sowie asteroseismische Daten der europäischen Exoplanetenmission CoRoT. Wir vergleichen unsere Resultate mit semianalytischen chemischen Entwicklungsmodellen und komplexeren chemodynamischen Simulationen, wobei uns die Kombination von asteroseismischen und spektroskopischen Daten erlaubt, zum ersten Mal die Zeitdimension solcher Modelle zu testen. Mit den CoRoT-APOGEE-Beobachtungen (kurz: CoRoGEE) lassen sich viel präzisere Altersbestimmungen für entfernte Riesensterne berechnen. Ein weiterer wichtiger Bestandteil dieser Arbeit ist die Verwendung sogenannter Mock-Beobachtungen, bei denen ein chemodynamisches Milchstraßenmodell so ``beobachtet'' wird wie die Milchstraße selbst, unter möglichst realistischer Berücksichtigung aller Beobachtungseffekte. Dies erlaubt uns akkuratere Vergleiche von Modellen und Daten, und ermöglicht eine einfachere Interpretation. Der erste Teil dieser Arbeit enthält eine chemodynamische Untersuchung von mehr als 20,000 roten Riesensternen, die sich bis zu 6 kpc (20,000 Lichtjahre) entfernt befinden. Diese Studie, die mit den ersten APOGEE-Daten gemacht wurde, konnte so das galaktische Volumen, das mit hochauflösender Spektroskopie je beobachtet wurde, dramatisch vergrößern. Weil die Sensitivität von APOGEE als Infrarotexperiment weit weniger durch interstellare Extinktion behindert wird, dringt unsere Stichprobe außerdem in die Regionen nahe der galaktischen Ebene vor, die typischerweise von optischen Durchmusterungen vermieden werden. Das erlaubt es uns, die chemodynamischen Eigenschaften der dünnen Milchstraßenscheibe außerhalb der unmittelbaren Sonnenumgebung zu studieren. Wir können beispielsweise zum ersten Mal mit hochauflösender Spektroskopie den radialen Metallizitätsgradienten der Scheibe als Funktion des Abstands von der Scheibenebene messen und zeigen, dass dieser Gradient oberhalb von 1 kpc positiv ist. Außerdem detektieren wir eine Lücke zwischen den Populationen I und II im chemischen [$\alpha$/Fe]-[Fe/H]-Häufigkeitsdiagramm, die im Gegensatz zur früheren Datenerhebungen schwerlich durch Selektionseffekte erklärt werden kann. Da für viele Sterne zudem 6-dimensionale Phasenrauminformationen vorliegen, können wir außerdem chemische Häufigkeitsdiagramme analysieren, in denen stellare Passanten aus anderen galaktischen Regionen ausgeblendet werden. Unsere Daten bestätigen zweifelsfrei die kurze Skalenlänge der dicken Milchstraßenscheibe (Population II). Im zweiten Teil der Arbeit nutzen wir zum ersten Mal kombinierte seismisch-spektroskopische Beobachtungen zum Zwecke der Galaktischen Archäologie. Wir analysieren dabei APOGEE-Beobachtungen von 606 roten Riesensternen in zwei CoRoT-Himmelsfeldern nahe der Galaktischen Ebene. Die Sterne sind über einen weiten Bereich der Galaktischen Scheibe verteilt (4.5 kpc $\lesssim R_{\rm Gal}\lesssim15$ kpc) und decken eine große Altersspanne ab (0.5 Gyr $\lesssim \tau\lesssim$ 13 Gyr), was es uns erlaubt, sowohl die Alters- als auch die radiale Abhängigkeit der [$\alpha$/Fe]-[Fe/H]-Verteilungen zu untersuchen. Dabei konstatieren wir, dass die Altersverteilung der Population-II-Sterne breiter ist als man es für ein monolithisches Kollaps-Szenario der dicken Scheibe erwarten würde. Vor Allem liegt das an einer vorher nicht bekannten, aber signifikanten Population scheinbar junger [$\alpha$/Fe]-reicher Sterne, deren Existenz mit Standardmodellen für die chemische Evolution der Galaktischen Scheibe nicht erklärbar ist. Diese eigentümlichen Objekte sind viel häufiger in der inneren Scheibe zu finden als in der äußeren, was darauf hindeutet, dass zumindest ein Teil dieser Population tatsächlich einen physikalischen Ursprung hat (etwa eine besondere chemische Entwicklung nahe des Galaktischen Balkens) und nicht etwa auf systematische Fehler in der Altersbestimmung zurückzuführen ist. Ein weiteres Resultat ergibt sich aus der Fülle von super-metallreichen Sternen in der äußeren Scheibe: der Effekt radialer Sternmigration scheint dort eine größere Rolle zu spielen als bisher angenommen. Im letzten Teil nutzen wir die CoRoGEE-Stichprobe, um die Zeitentwicklung des radialen Metallizitätsgradienten der dünnen Scheibe zu studieren; eine Unbekannte, die sowohl unter Theoretikern als auch unter Beobachtern in den letzten zwanzig Jahren immer wieder für Diskussionen sorgte. Wir teilen dazu die CoRoGEE-Daten in sechs Altersgruppen ein und erhalten durch eine sorgfältige statistische Analyse der radialen [Fe/H] Verteilungen unter Berücksichtigung systematischer Unsicherheiten verlässliche Werte für den Metallizitätsgradienten. Dessen Anstieg für die junge Population der roten Riesen ($-0.058\pm0.008$ [stat.] $\pm0.003$ [syst.] dex/kpc) ist konsistent mit den neuesten Messungen an Cepheiden. Im Altersbereich $1-4$ Gyr verzeichnen wir einen leicht steileren Gradienten ($-0.066\pm0.007\pm0.002$ dex/kpc), der für ältere Sterne (6--10 Gyr) wieder flacher ausfällt ($\sim-0.03$ dex/kpc). Diese Altersabhängigkeit des Metallizitätsgradienten lässt sich unter anderem durch ein Modell erklären, in dem der Metallizitätsgradient des interstellaren Medium etwa konstant bei $~-0.07$ dex/kpc liegt und in alten stellaren Populationen durch kinematische Effekte wie stellare Migration verwaschen wird. Stellare radiale Migration eröffnet uns außerdem eine elegante Erklärung für die verwundernde Tatsche, dass Sternhaufen mittleren Alters in der Sonnenumgebung oft höhere Metallizitäten aufweisen als junge Haufen. Um das zu erklären, schlagen wir ein Szenario vor, in dem nichtmigrierende Haufen eher durch gravitative Wechselwirkungen in der Scheibe zersöort werden als migrierende, was in der Sonnenumgebung eine Verzerrung zu Gunsten metallreicherer Haufen aus der inneren Scheibe nach sich zöge und, wie ebenfalls beobachtet, zur Folge hätte, dass der Metallizitätsgradient der mittelalten Haufenpopulation viel steiler wäre als der der jungen Haufen. KW - galactic astronomy KW - Milky Way evolution KW - Milky Way chemodynamics KW - red giant stars KW - asteroseismology KW - spectroscopy KW - galaktische Astrophysik KW - Entstehung der Milchstraße KW - Chemodynamik der Milchstraße KW - rote Riesensterne KW - Asteroseismologie KW - Spektroskopie Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-396681 ER - TY - THES A1 - Brauer, Dorothée T1 - Chemo-kinematic constraints on Milky Way models from the spectroscopic surveys SEGUE & RAVE T1 - Beschränkungen von Modellen der Milchstraße auf Basis der chemisch-kinematischen Analyse von Beobachtungsdaten der spektroskopischen Himmelsdurchmusterungen SEGUE und RAVE N2 - The Milky Way is only one out of billions of galaxies in the universe. However, it is a special galaxy because it allows to explore the main mechanisms involved in its evolution and formation history by unpicking the system star-by-star. Especially, the chemical fingerprints of its stars provide clues and evidence of past events in the Galaxy’s lifetime. These information help not only to decipher the current structure and building blocks of the Milky Way, but to learn more about the general formation process of galaxies. In the past decade a multitude of stellar spectroscopic Galactic surveys have scanned millions of stars far beyond the rim of the solar neighbourhood. The obtained spectroscopic information provide unprecedented insights to the chemo-dynamics of the Milky Way. In addition analytic models and numerical simulations of the Milky Way provide necessary descriptions and predictions suited for comparison with observations in order to decode the physical properties that underlie the complex system of the Galaxy. In the thesis various approaches are taken to connect modern theoretical modelling of galaxy formation and evolution with observations from Galactic stellar surveys. With its focus on the chemo-kinematics of the Galactic disk this work aims to determine new observational constraints on the formation of the Milky Way providing also proper comparisons with two different models. These are the population synthesis model TRILEGAL based on analytical distribution functions, which aims to simulate the number and distribution of stars in the Milky Way and its different components, and a hybrid model (MCM) that combines an N-body simulation of a Milky Way like galaxy in the cosmological framework with a semi-analytic chemical evolution model for the Milky Way. The major observational data sets in use come from two surveys, namely the “Radial Velocity Experiment” (RAVE) and the “Sloan Extension for Galactic Understanding and Exploration” (SEGUE). In the first approach the chemo-kinematic properties of the thin and thick disk of the Galaxy as traced by a selection of about 20000 SEGUE G-dwarf stars are directly compared to the predictions by the MCM model. As a necessary condition for this, SEGUE's selection function and its survey volume are evaluated in detail to correct the spectroscopic observations for their survey specific selection biases. Also, based on a Bayesian method spectro-photometric distances with uncertainties below 15% are computed for the selection of SEGUE G-dwarfs that are studied up to a distance of 3 kpc from the Sun. For the second approach two synthetic versions of the SEGUE survey are generated based on the above models. The obtained synthetic stellar catalogues are then used to create mock samples best resembling the compiled sample of observed SEGUE G-dwarfs. Generally, mock samples are not only ideal to compare predictions from various models. They also allow validation of the models' quality and improvement as with this work could be especially achieved for TRILEGAL. While TRILEGAL reproduces the statistical properties of the thin and thick disk as seen in the observations, the MCM model has shown to be more suitable in reproducing many chemo-kinematic correlations as revealed by the SEGUE stars. However, evidence has been found that the MCM model may be missing a stellar component with the properties of the thick disk that the observations clearly show. While the SEGUE stars do indicate a thin-thick dichotomy of the stellar Galactic disk in agreement with other spectroscopic stellar studies, no sign for a distinct metal-poor disk is seen in the MCM model. Usually stellar spectroscopic surveys are limited to a certain volume around the Sun covering different regions of the Galaxy’s disk. This often prevents to obtain a global view on the chemo-dynamics of the Galactic disk. Hence, a suitable combination of stellar samples from independent surveys is not only useful for the verification of results but it also helps to complete the picture of the Milky Way. Therefore, the thesis closes with a comparison of the SEGUE G-dwarfs and a sample of RAVE giants. The comparison reveals that the chemo-kinematic relations agree in disk regions where the samples of both surveys show a similar number of stars. For those parts of the survey volumes where one of the surveys lacks statistics they beautifully complement each other. This demonstrates that the comparison of theoretical models on the one side, and the combined observational data gathered by multiple surveys on the other side, are key ingredients to understand and disentangle the structure and formation history of the Milky Way. N2 - Die Milchstraße ist nur eine unter Milliarden von Galaxien im Universum, dennoch ist sie besonders. Sie bietet die einzigartige Möglichkeit anhand ihrer einzeln auflösbaren Sterne und deren im Detail beobachtbaren Eigenschaften die Mechanismen ihrer Evolutions- und Entstehungsgeschichte genau zu studieren und damit Rückschlüsse auf die Entwicklungsprozesse von Galaxien im Allgemeinen zu ziehen. Insbesondere der chemische Fingerabdruck ihrer Sterne liefert dabei Indizien und Beweise für Ereignisse im Leben der Galaxie. In den letzten 15 Jahren wurden daher in einer Vielzahl von Himmeldurchmusterungen Millionen von Sternen in der Milchstraße spektroskopisch beobachtet. Die so gewonnenen Informationen bieten detaillierte Einblicke in die Substrukturen unserer Galaxie und deren chemisch-kinematische Struktur. Ergänzend dazu liefern analytische Modelle und numerische Simulationen der Milchstraße wichtige Beschreibungen, die sich zum Vergleich mit Beobachtungen eignen, um die dem komplexen System der Galaxie zugrunde liegenden exakten physikalischen Eigenschaften entschlüsseln zu können. Die vorliegende Arbeit nutzt verschiedene Ansätze, um moderne theoretische Modelle der Galaxienentstehung und -evolution mit Daten aus stellaren Beobachtungskampagnen zu vergleichen. Die dazu analysierten Beobachtungsdatensätze stammen aus zwei großen Himmelsdurchmusterungen, dem „Radial Velocity Experiment“ (RAVE) und dem „Sloan Extension for Galactic Understanding and Exploration“ (SEGUE). Mit dem Fokus auf der chemisch-kinematischen Struktur der galaktischen Scheibe geht es im Wesentlichen darum, zwei Modelle der Milchstraße zu testen, nämlich ein Populationssynthesemodell (TRILEGAL) und ein Hybridmodell (MCM). Während TRILEGAL auf analytischen Verteilungsfunktionen basiert und zum Ziel hat, die Anzahl und Verteilung der Sterne innerhalb der Galaxie und ihrer unterschiedlichen Komponenten zu simulieren, verbindet das MCM Modell eine kosmologische N-Körper Simulation einer der Milchstraße ähnlichen Galaxie mit einem semi-analytischen Modell zur Beschreibung der chemischen Evolution der Milchstraße. Auf Grundlage einer Auswahl von etwa 20000 SEGUE G-Zwergsternen werden in einem ersten Ansatz die aus den Messdaten gewonnenen chemisch-kinematischen Eigenschaften der dünnen und dicken Scheibe der Milchstraße mit den direkten Vorhersagen des MCM Modells verglichen. Eine notwendige Bedingung dafür ist die Korrektur der Beobachtungsdaten für systematische Fehler bei der Objektauswahl der Beobachtungskampagne. Zudem werden mittels einer Bayesischen Methode spektro-photometrische Distanzen mit Fehlern kleiner als 15% für die Auswahl an SEGUE Sternen berechnet, die sich in einer Entfernung von bis zu 3 kpc von der Sonne befinden. Für den zweiten Ansatz werden basierend auf den oben genannten Modellen zwei synthetische Versionen der SEGUE Himmelsdurchmusterung generiert. Diese künstlichen stellaren Kataloge werden dann verwendet, um Vergleichspseudodatensätze für die verwendeten Zwergsterndaten anzufertigen. Solche synthetischen Testdatensätze eignen sich nicht nur, um die Vorhersagen verschiedener Modelle zu vergleichen, sie können auch zur Validierung der Qualität einzelner Modelle herangezogen werden. Während sich in der Analyse zeigt, dass TRILEGAL sich besonders gut eignet, statistische Eigenschaften der dünnen und dicken galaktischen Scheibe zu reproduzieren, spiegelt das MCM Modell viele der in der Milchstraße beobachtbaren chemisch-kinematischen Korrelationen gut wieder. Trotzdem finden sich Beweise dafür, dass dem MCM Modell eine stellare Komponente fehlt, deren Eigenschaften der in den Beobachtungen sichtbaren dicken Scheibe ähnlich sind. Meist sind spektroskopische Beobachtungskampagnen auf ein bestimmtes Volumen um die Sonne beschränkt. Oftmals verhindert dies die Möglichkeit einen globalen Blick auf die chemisch-kinematischen Eigenschaften der galaktischen Scheibe zu erlangen. Die Kombination von stellaren Daten unabhängiger Kampagnen ist daher nicht nur nützlich für die Verifikation von Ergebnissen, es hilft auch ein ganzheitlicheres Bild der Galaxie zu erlangen. Die vorliegende Arbeit schließt daher mit einem Vergleich der SEGUE G-Zwergsterne und einer Auswahl von RAVE Riesensternen. Es zeigt sich eine gute Übereinstimmung bzgl. der chemisch-kinematischen Struktur der galaktischen Scheibe besonders in denjenigen Regionen, die von einer Vielzahl von SEGUE und RAVE Objekten abgedeckt werden. Für Regionen des Beobachtungsvolumens, in dem die eine oder die andere der beiden Beobachtungskampagnen eine geringere Statistik von beobachteten Sternen aufweist, ergänzen sich RAVE und SEGUE gut. Dies zeigt, dass nicht nur der Vergleich von Beobachtungen und theoretischen Modellen, sondern auch die Kombination von Messdaten aus verschiedenen Himmelsdurchmusterungen wichtig ist, um die Struktur und die Entstehungsgeschichte der Milchstraße zu verstehen und zu entschlüsseln. KW - galaktische Astronomie KW - galactic astronomy KW - Entstehung der Milchstraße KW - Milky Way formation KW - Evolution der Milchstraße KW - Milky Way evolution KW - Milky Way chemo-kinematics KW - Chemokinematik der Milchstraße KW - SEGUE survey KW - SEGUE Beobachtungskampagne KW - RAVE survey KW - RAVE Beobachtungskampagne KW - mock data catalogues KW - Pseudodatensätze Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-403968 ER -