TY - JOUR A1 - Tang, Kam W. A1 - Gladyshev, Michail I. A1 - Dubovskaya, Olgo P. A1 - Kirillin, Georgiy A1 - Grossart, Hans-Peter T1 - Zooplankton carcasses and non-predatory mortality in freshwater and inland sea environments JF - Journal of plankton research N2 - Zooplankton carcasses are ubiquitous in marine and freshwater systems, implicating the importance of non-predatory mortality, but both are often overlooked in ecological studies compared with predatory mortality. The development of several microscopic methods allows the distinction between live and dead zooplankton in field samples, and the reported percentages of dead zooplankton average 11.6 (minimum) to 59.8 (maximum) in marine environments, and 7.4 (minimum) to 47.6 (maximum) in fresh and inland waters. Common causes of non-predatory mortality among zooplankton include senescence, temperature change, physical and chemical stresses, parasitism and food-related factors. Carcasses resulting from non-predatory mortality may undergo decomposition leading to an increase in microbial production and a shift in microbial composition in the water column. Alternatively, sinking carcasses may contribute significantly to vertical carbon flux especially outside the phytoplankton growth seasons, and become a food source for the benthos. Global climate change is already altering freshwater ecosystems on multiple levels, and likely will have significant positive or negative effects on zooplankton non-predatory mortality. Better spatial and temporal studies of zooplankton carcasses and non-predatory mortality rates will improve our understanding of this important but under-appreciated topic. KW - carbon flux KW - inland waters KW - lakes KW - live KW - dead sorting KW - non-predatory mortality KW - zooplankton carcasses Y1 - 2014 U6 - https://doi.org/10.1093/plankt/fbu014 SN - 0142-7873 SN - 1464-3774 VL - 36 IS - 3 SP - 597 EP - 612 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Mehner, T. A1 - Attermeyer, Katrin A1 - Brauns, Mario A1 - Brothers, Soren M. A1 - Diekmann, J. A1 - Gaedke, Ursula A1 - Grossart, Hans-Peter A1 - Koehler, J. A1 - Lischke, Betty A1 - Meyer, N. A1 - Scharnweber, Inga Kristin A1 - Syvaranta, J. A1 - Vanni, M. J. A1 - Hilt, S. T1 - Weak Response of Animal Allochthony and Production to Enhanced Supply of Terrestrial Leaf Litter in Nutrient-Rich Lakes JF - Ecosystems N2 - Ecosystems are generally linked via fluxes of nutrients and energy across their boundaries. For example, freshwater ecosystems in temperate regions may receive significant inputs of terrestrially derived carbon via autumnal leaf litter. This terrestrial particulate organic carbon (POC) is hypothesized to subsidize animal production in lakes, but direct evidence is still lacking. We divided two small eutrophic lakes each into two sections and added isotopically distinct maize litter to the treatment sections to simulate increased terrestrial POC inputs via leaf litter in autumn. We quantified the reliance of aquatic consumers on terrestrial resources (allochthony) in the year subsequent to POC additions by applying mixing models of stable isotopes. We also estimated lake-wide carbon (C) balances to calculate the C flow to the production of the major aquatic consumer groups: benthic macroinvertebrates, crustacean zooplankton, and fish. The sum of secondary production of crustaceans and benthic macroinvertebrates supported by terrestrial POC was higher in the treatment sections of both lakes. In contrast, total secondary and tertiary production (supported by both autochthonous and allochthonous C) was higher in the reference than in the treatment sections of both lakes. Average aquatic consumer allochthony per lake section was 27-40%, although terrestrial POC contributed less than about 10% to total organic C supply to the lakes. The production of aquatic consumers incorporated less than 5% of the total organic C supply in both lakes, indicating a low ecological efficiency. We suggest that the consumption of terrestrial POC by aquatic consumers facilitates a strong coupling with the terrestrial environment. However, the high autochthonous production and the large pool of autochthonous detritus in these nutrient-rich lakes make terrestrial POC quantitatively unimportant for the C flows within food webs. KW - stable isotopes KW - terrestrial subsidy KW - carbon budget KW - ecological efficiency KW - benthic food web KW - pelagic food web Y1 - 2016 U6 - https://doi.org/10.1007/s10021-015-9933-2 SN - 1432-9840 SN - 1435-0629 VL - 19 SP - 311 EP - 325 PB - Springer CY - New York ER - TY - JOUR A1 - Adel, Mustafa A1 - Elbehery, Ali H. A. A1 - Aziz, Sherry K. A1 - Aziz, Ramy K. A1 - Grossart, Hans-Peter A1 - Siam, Rania T1 - Viruses-to-mobile genetic elements skew in the deep Atlantis II brine pool sediments JF - Scientific reports N2 - The central rift of the Red Sea has 25 brine pools with different physical and geochemical characteristics. Atlantis II (ATIID), Discovery Deeps (DD) and Chain Deep (CD) are characterized by high salinity, temperature and metal content. Several studies reported microbial communities in these brine pools, but few studies addressed the brine pool sediments. Therefore, sediment cores were collected from ATIID, DD, CD brine pools and an adjacent brine-influenced site. Sixteen different lithologic sediment sections were subjected to shotgun DNA pyrosequencing to generate 1.47 billion base pairs (1.47 x 10(9) bp). We generated sediment-specific reads and attempted to annotate all reads. We report the phylogenetic and biochemical uniqueness of the deepest ATIID sulfur-rich brine pool sediments. In contrary to all other sediment sections, bacteria dominate the deepest ATIID sulfur-rich brine pool sediments. This decrease in virus-to-bacteria ratio in selected sections and depth coincided with an overrepresentation of mobile genetic elements. Skewing in the composition of viruses-to-mobile genetic elements may uniquely contribute to the distinct microbial consortium in sediments in proximity to hydrothermally active vents of the Red Sea and possibly in their surroundings, through differential horizontal gene transfer. Y1 - 2016 U6 - https://doi.org/10.1038/srep32704 SN - 2045-2322 VL - 6 SP - 8882 EP - 8888 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Schulze-Makuch, Dirk A1 - Wagner, Dirk A1 - Kounaves, Samuel P. A1 - Mangelsdorf, Kai A1 - Devine, Kevin G. A1 - de Vera, Jean-Pierre A1 - Schmitt-Kopplin, Philippe A1 - Grossart, Hans-Peter A1 - Parro, Victor A1 - Kaupenjohann, Martin A1 - Galy, Albert A1 - Schneider, Beate A1 - Airo, Alessandro A1 - Froesler, Jan A1 - Davila, Alfonso F. A1 - Arens, Felix L. A1 - Caceres, Luis A1 - Cornejo, Francisco Solis A1 - Carrizo, Daniel A1 - Dartnell, Lewis A1 - DiRuggiero, Jocelyne A1 - Flury, Markus A1 - Ganzert, Lars A1 - Gessner, Mark O. A1 - Grathwohl, Peter A1 - Guan, Lisa A1 - Heinz, Jacob A1 - Hess, Matthias A1 - Keppler, Frank A1 - Maus, Deborah A1 - McKay, Christopher P. A1 - Meckenstock, Rainer U. A1 - Montgomery, Wren A1 - Oberlin, Elizabeth A. A1 - Probst, Alexander J. A1 - Saenz, Johan S. A1 - Sattler, Tobias A1 - Schirmack, Janosch A1 - Sephton, Mark A. A1 - Schloter, Michael A1 - Uhl, Jenny A1 - Valenzuela, Bernardita A1 - Vestergaard, Gisle A1 - Woermer, Lars A1 - Zamorano, Pedro T1 - Transitory microbial habitat in the hyperarid Atacama Desert JF - Proceedings of the National Academy of Sciences of the United States of America KW - habitat KW - aridity KW - microbial activity KW - biomarker KW - Mars Y1 - 2018 U6 - https://doi.org/10.1073/pnas.1714341115 SN - 0027-8424 VL - 115 IS - 11 SP - 2670 EP - 2675 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Rojas-Jimenez, Keilor A1 - Fonvielle, Jeremy Andre A1 - Ma, Hua A1 - Grossart, Hans-Peter T1 - Transformation of humic substances by the freshwater Ascomycete Cladosporium sp. JF - Waterbird N2 - The ecological relevance of fungi in freshwater ecosystems is becoming increasingly evident, particularly in processing the extensive amounts of polymeric organic carbon such as cellulose, chitin, and humic substances (HS). We isolated several fungal strains from oligo-mesotrophic Lake Stechlin, Brandenburg, Germany, and analyzed their ability to degrade polymeric-like substrates. Using liquid chromatography-organic carbon detection, we determined the byproducts of HS transformation by the freshwater fungus Cladosporium sp. KR14. We demonstrate the ability of this fungus to degrade and simultaneously synthesize HS, and that transformation processes were intensified when iron, as indicator of the occurrence of Fenton reactions, was present in the medium. Furthermore, we showed that structural complexity of the HS produced changed with the availability of other polymeric substances in the medium. Our study highlights the contribution of freshwater Ascomycetes to the transformation of complex organic compounds. As such, it has important implications for understanding the ecological contribution of fungi to aquatic food webs and related biogeochemical cycles. Y1 - 2017 U6 - https://doi.org/10.1002/lno.10545 SN - 1524-4695 SN - 1938-5390 VL - 40 SP - 282 EP - 288 PB - Waterbird SOC CY - Washington ER - TY - JOUR A1 - Krause, Sascha A1 - Le Roux, Xavier A1 - Niklaus, Pascal A. A1 - Van Bodegom, Peter M. A1 - Lennon, Jay T. A1 - Bertilsson, Stefan A1 - Grossart, Hans-Peter A1 - Philippot, Laurent A1 - Bodelier, Paul L. E. T1 - Trait-based approaches for understanding microbial biodiversity and ecosystem functioning JF - Frontiers in microbiology N2 - In ecology, biodiversity-ecosystem functioning (BEE) research has seen a shift in perspective from taxonomy to function in the last two decades, with successful application of trait-based approaches. This shift offers opportunities for a deeper mechanistic understanding of the role of biodiversity in maintaining multiple ecosystem processes and services. In this paper, we highlight studies that have focused on BEE of microbial communities with an emphasis on integrating trait-based approaches to microbial ecology. In doing so, we explore some of the inherent challenges and opportunities of understanding BEE using microbial systems. For example, microbial biologists characterize communities using gene phylogenies that are often unable to resolve functional traits. Additionally, experimental designs of existing microbial BEE studies are often inadequate to unravel BEE relationships. We argue that combining eco-physiological studies with contemporary molecular tools in a trait-based framework can reinforce our ability to link microbial diversity to ecosystem processes. We conclude that such trait-based approaches are a promising framework to increase the understanding of microbial BEE relationships and thus generating systematic principles in microbial ecology and more generally ecology. KW - functional traits KW - ecosystem function KW - ecological theory KW - study designs KW - microbial diversity Y1 - 2014 U6 - https://doi.org/10.3389/fmicb.2014.00251 SN - 1664-302X VL - 5 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Amalfitano, Stefano A1 - Corno, Gianluca A1 - Eckert, Ester A1 - Fazi, Stefano A1 - Ninio, Shira A1 - Callieri, Cristiana A1 - Grossart, Hans-Peter A1 - Eckert, Werner T1 - Tracing particulate matter and associated microorganisms in freshwaters JF - Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica N2 - Sediment resuspension represents a key process in all natural aquatic systems, owing to its role in nutrient cycling and transport of potential contaminants. Although suspended solids are generally accepted as an important quality parameter, current monitoring programs cover quantitative aspects only. Established methodologies do not provide information on origin, fate, and risks associated with uncontrolled inputs of solids in waters. Here we discuss the analytical approaches to assess the occurrence and ecological relevance of resuspended particulate matter in freshwaters, with a focus on the dynamics of associated contaminants and microorganisms. Triggered by the identification of specific physical-chemical traits and community structure of particle-associated microorganisms, recent findings suggest that a quantitative determination of microorganisms can be reasonably used to trace the origin of particulate matter by means of nucleic acid-based assays in different aquatic systems. KW - Total suspended solids KW - Resuspended particulate KW - Turbidity KW - Sediment traps KW - Particle-associated microorganisms KW - Pathogens Y1 - 2017 U6 - https://doi.org/10.1007/s10750-017-3260-x SN - 0018-8158 SN - 1573-5117 VL - 800 SP - 145 EP - 154 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Leunert, Franziska A1 - Grossart, Hans-Peter A1 - Gerhardt, Volkmar A1 - Eckert, Werner T1 - Toxicant induced changes on delayed fluorescence decay kinetics of cyanobacteria and green algae a rapid and sensitive biotest JF - PLoS one N2 - Algal tests have developed into routine tools for testing toxicity of pollutants in aquatic environments. Meanwhile, in addition to algal growth rates, an increasing number of fluorescence based methods are used for rapid and sensitive toxicity measures. The present study stresses the suitability of delayed fluorescence (DF) as a promising parameter for biotests. DF is based on the recombination fluorescence at the reaction centre of photosystem II, which is emitted only by photosynthetically active cells. We analyzed the effects of three chemicals (3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 3,5 Dichlorophenol (3,5 DCP) and copper) on the shape of the DF decay kinetics for potential use in phytoplankton toxicity tests. The short incubation tests were done with four phytoplankton species, with special emphasis on the cyanobacterium Microcystis aeruginosa. All species exhibited a high sensitivity to DCMU, but cyanobacteria were more affected by copper and less by 3,5 DCP than the tested green algae. Analyses of changes in the DF decay curve in response to the added chemicals indicated the feasibility of the DF decay approach as a rapid and sensitive testing tool. Y1 - 2013 U6 - https://doi.org/10.1371/journal.pone.0063127 SN - 1932-6203 VL - 8 IS - 4 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Heger, Tina A1 - Bernard-Verdier, Maud A1 - Gessler, Arthur A1 - Greenwood, Alex D. A1 - Grossart, Hans-Peter A1 - Hilker, Monika A1 - Keinath, Silvia A1 - Kowarik, Ingo A1 - Küffer, Christoph A1 - Marquard, Elisabeth A1 - Mueller, Johannes A1 - Niemeier, Stephanie A1 - Onandia, Gabriela A1 - Petermann, Jana S. A1 - Rillig, Matthias C. A1 - Rodel, Mark-Oliver A1 - Saul, Wolf-Christian A1 - Schittko, Conrad A1 - Tockner, Klement A1 - Joshi, Jasmin Radha A1 - Jeschke, Jonathan M. T1 - Towards an Integrative, Eco-Evolutionary Understanding of Ecological Novelty: Studying and Communicating Interlinked Effects of Global Change JF - Bioscience N2 - Global change has complex eco-evolutionary consequences for organisms and ecosystems, but related concepts (e.g., novel ecosystems) do not cover their full range. Here we propose an umbrella concept of "ecological novelty" comprising (1) a site-specific and (2) an organism-centered, eco-evolutionary perspective. Under this umbrella, complementary options for studying and communicating effects of global change on organisms, ecosystems, and landscapes can be included in a toolbox. This allows researchers to address ecological novelty from different perspectives, e.g., by defining it based on (a) categorical or continuous measures, (b) reference conditions related to sites or organisms, and (c) types of human activities. We suggest striving for a descriptive, non-normative usage of the term "ecological novelty" in science. Normative evaluations and decisions about conservation policies or management are important, but require additional societal processes and engagement with multiple stakeholders. KW - Anthropocene KW - eco-evolutionary experience KW - global change KW - novel ecosystems KW - shifting baselines Y1 - 2019 U6 - https://doi.org/10.1093/biosci/biz095 SN - 0006-3568 SN - 1525-3244 VL - 69 IS - 11 SP - 888 EP - 899 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Giling, Darren P. A1 - Nejstgaard, Jens C. A1 - Berger, Stella A. A1 - Grossart, Hans-Peter A1 - Kirillin, Georgiy A1 - Penske, Armin A1 - Lentz, Maren A1 - Casper, Peter A1 - Sareyka, Joerg A1 - Gessner, Mark O. T1 - Thermocline deepening boosts ecosystem metabolism: evidence from a large-scale lake enclosure experiment simulating a summer storm JF - Global change biology N2 - Extreme weather events can pervasively influence ecosystems. Observations in lakes indicate that severe storms in particular can have pronounced ecosystem-scale consequences, but the underlying mechanisms have not been rigorously assessed in experiments. One major effect of storms on lakes is the redistribution of mineral resources and plankton communities as a result of abrupt thermocline deepening. We aimed at elucidating the importance of this effect by mimicking in replicated large enclosures (each 9 m in diameter, ca. 20 m deep, ca. 1300 m 3 in volume) a mixing event caused by a severe natural storm that was previously observed in a deep clear-water lake. Metabolic rates were derived from diel changes in vertical profiles of dissolved oxygen concentrations using a Bayesian modelling approach, based on high-frequency measurements. Experimental thermocline deepening stimulated daily gross primary production (GPP) in surface waters by an average of 63% for > 4 weeks even though thermal stratification re-established within 5 days. Ecosystem respiration (ER) was tightly coupled to GPP, exceeding that in control enclosures by 53% over the same period. As GPP responded more strongly than ER, net ecosystem productivity (NEP) of the entire water column was also increased. These protracted increases in ecosystem metabolism and autotrophy were driven by a proliferation of inedible filamentous cyanobacteria released from light and nutrient limitation after they were entrained from below the thermocline into the surface water. Thus, thermocline deepening by a single severe storm can induce prolonged responses of lake ecosystem metabolism independent of other storm-induced effects, such as inputs of terrestrial materials by increased catchment run-off. This highlights that future shifts in frequency, severity or timing of storms are an important component of climate change, whose impacts on lake thermal structure will superimpose upon climate trends to influence algal dynamics and organic matter cycling in clear-water lakes. Keywords: climate variability, ecosystem productivity, extreme events, gross primary production, mesocosm, respiration stratified lakes KW - climate variability KW - ecosystem productivity KW - extreme events KW - gross primary production KW - mesocosm KW - respiration stratified lakes Y1 - 2017 U6 - https://doi.org/10.1111/gcb.13512 SN - 1354-1013 SN - 1365-2486 VL - 23 SP - 1448 EP - 1462 PB - Wiley CY - Hoboken ER -