TY - JOUR A1 - Saynisch-Wagner, Jan A1 - Bärenzung, Julien A1 - Hornschild, Aaron A1 - Irrgang, Christopher A1 - Thomas, Maik T1 - Tide-induced magnetic signals and their errors derived from CHAMP and Swarm satellite magnetometer observations JF - Earth, planets and space : EPS N2 - Satellite-measured tidal magnetic signals are of growing importance. These fields are mainly used to infer Earth's mantle conductivity, but also to derive changes in the oceanic heat content. We present a new Kalman filter-based method to derive tidal magnetic fields from satellite magnetometers: KALMAG. The method's advantage is that it allows to study a precisely estimated posterior error covariance matrix. We present the results of a simultaneous estimation of the magnetic signals of 8 major tides from 17 years of Swarm and CHAMP data. For the first time, robustly derived posterior error distributions are reported along with the reported tidal magnetic fields. The results are compared to other estimates that are either based on numerical forward models or on satellite inversions of the same data. For all comparisons, maximal differences and the corresponding globally averaged RMSE are reported. We found that the inter-product differences are comparable with the KALMAG-based errors only in a global mean sense. Here, all approaches give values of the same order, e.g., 0.09 nT-0.14 nT for M2. Locally, the KALMAG posterior errors are up to one order smaller than the inter-product differences, e.g., 0.12 nT vs. 0.96 nT for M2. KW - Tides KW - Electromagnetic induction KW - Error covariance KW - Satellite magnetometer observations Y1 - 2021 U6 - https://doi.org/10.1186/s40623-021-01557-3 SN - 1880-5981 VL - 73 IS - 1 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Ropp, Guillaume A1 - Lesur, Vincent A1 - Bärenzung, Julien A1 - Holschneider, Matthias T1 - Sequential modelling of the Earth’s core magnetic field JF - Earth, Planets and Space N2 - We describe a new, original approach to the modelling of the Earth's magnetic field. The overall objective of this study is to reliably render fast variations of the core field and its secular variation. This method combines a sequential modelling approach, a Kalman filter, and a correlation-based modelling step. Sources that most significantly contribute to the field measured at the surface of the Earth are modelled. Their separation is based on strong prior information on their spatial and temporal behaviours. We obtain a time series of model distributions which display behaviours similar to those of recent models based on more classic approaches, particularly at large temporal and spatial scales. Interesting new features and periodicities are visible in our models at smaller time and spatial scales. An important aspect of our method is to yield reliable error bars for all model parameters. These errors, however, are only as reliable as the description of the different sources and the prior information used are realistic. Finally, we used a slightly different version of our method to produce candidate models for the thirteenth edition of the International Geomagnetic Reference Field. KW - geomagnetic field KW - secular variation KW - Kalman filter KW - IGRF Y1 - 2020 U6 - https://doi.org/10.1186/s40623-020-01230-1 SN - 1880-5981 VL - 72 IS - 1 PB - Springer CY - New York ER - TY - JOUR A1 - Sanchez, Sabrina A1 - Wicht, Johannes A1 - Bärenzung, Julien T1 - Predictions of the geomagnetic secular variation based on the ensemble sequential assimilation of geomagnetic field models by dynamo simulations JF - Earth, planets and space N2 - The IGRF offers an important incentive for testing algorithms predicting the Earth's magnetic field changes, known as secular variation (SV), in a 5-year range. Here, we present a SV candidate model for the 13th IGRF that stems from a sequential ensemble data assimilation approach (EnKF). The ensemble consists of a number of parallel-running 3D-dynamo simulations. The assimilated data are geomagnetic field snapshots covering the years 1840 to 2000 from the COV-OBS.x1 model and for 2001 to 2020 from the Kalmag model. A spectral covariance localization method, considering the couplings between spherical harmonics of the same equatorial symmetry and same azimuthal wave number, allows decreasing the ensemble size to about a 100 while maintaining the stability of the assimilation. The quality of 5-year predictions is tested for the past two decades. These tests show that the assimilation scheme is able to reconstruct the overall SV evolution. They also suggest that a better 5-year forecast is obtained keeping the SV constant compared to the dynamically evolving SV. However, the quality of the dynamical forecast steadily improves over the full assimilation window (180 years). We therefore propose the instantaneous SV estimate for 2020 from our assimilation as a candidate model for the IGRF-13. The ensemble approach provides uncertainty estimates, which closely match the residual differences with respect to the IGRF-13. Longer term predictions for the evolution of the main magnetic field features over a 50-year range are also presented. We observe the further decrease of the axial dipole at a mean rate of 8 nT/year as well as a deepening and broadening of the South Atlantic Anomaly. The magnetic dip poles are seen to approach an eccentric dipole configuration. KW - Earth's magnetic field KW - Geomagnetic secular variation KW - Dynamo KW - simulations KW - Data assimilation Y1 - 2020 U6 - https://doi.org/10.1186/s40623-020-01279-y SN - 1880-5981 VL - 72 IS - 1 PB - Springer CY - New York ER - TY - JOUR A1 - Lesur, Vincent A1 - Wardinski, Ingo A1 - Bärenzung, Julien A1 - Holschneider, Matthias T1 - On the frequency spectra of the core magnetic field Gauss coefficients JF - Physics of the earth and planetary interiors N2 - From monthly mean observatory data spanning 1957-2014, geomagnetic field secular variation values were calculated by annual differences. Estimates of the spherical harmonic Gauss coefficients of the core field secular variation were then derived by applying a correlation based modelling. Finally, a Fourier transform was applied to the time series of the Gauss coefficients. This process led to reliable temporal spectra of the Gauss coefficients up to spherical harmonic degree 5 or 6, and down to periods as short as 1 or 2 years depending on the coefficient. We observed that a k(-2) slope, where k is the frequency, is an acceptable approximation for these spectra, with possibly an exception for the dipole field. The monthly estimates of the core field secular variation at the observatory sites also show that large and rapid variations of the latter happen. This is an indication that geomagnetic jerks are frequent phenomena and that significant secular variation signals at short time scales - i.e. less than 2 years, could still be extracted from data to reveal an unexplored part of the core dynamics. KW - Geomagnetism KW - Core field KW - Secular variation rate of change KW - Geomagnetic jerks KW - Correlation based modelling Y1 - 2017 U6 - https://doi.org/10.1016/j.pepi.2017.05.017 SN - 0031-9201 SN - 1872-7395 VL - 276 SP - 145 EP - 158 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bärenzung, Julien A1 - Holschneider, Matthias A1 - Wicht, Johannes A1 - Sanchez, Sabrina A1 - Lesur, Vincent T1 - Modeling and predicting the short-term evolution of the geomagnetic field JF - Journal of geophysical research : Solid earth N2 - We propose a reduced dynamical system describing the coupled evolution of fluid flow and magnetic field at the top of the Earth's core between the years 1900 and 2014. The flow evolution is modeled with a first-order autoregressive process, while the magnetic field obeys the classical frozen flux equation. An ensemble Kalman filter algorithm serves to constrain the dynamics with the geomagnetic field and its secular variation given by the COV-OBS.x1 model. Using a large ensemble with 40,000 members provides meaningful statistics including reliable error estimates. The model highlights two distinct flow scales. Slowly varying large-scale elements include the already documented eccentric gyre. Localized short-lived structures include distinctly ageostophic features like the high-latitude polar jet on the Northern Hemisphere. Comparisons with independent observations of the length-of-day variations not only validate the flow estimates but also suggest an acceleration of the geostrophic flows over the last century. Hindcasting tests show that our model outperforms simpler predictions bases (linear extrapolation and stationary flow). The predictability limit, of about 2,000 years for the magnetic dipole component, is mostly determined by the random fast varying dynamics of the flow and much less by the geomagnetic data quality or lack of small-scale information. KW - core flow KW - assimilation KW - prediction KW - length of day Y1 - 2018 U6 - https://doi.org/10.1029/2017JB015115 SN - 2169-9313 SN - 2169-9356 VL - 123 IS - 6 SP - 4539 EP - 4560 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Bärenzung, Julien A1 - Holschneider, Matthias A1 - Lesur, Vincent T1 - constraints JF - Journal of geophysical research : Solid earth N2 - Prior information in ill-posed inverse problem is of critical importance because it is conditioning the posterior solution and its associated variability. The problem of determining the flow evolving at the Earth's core-mantle boundary through magnetic field models derived from satellite or observatory data is no exception to the rule. This study aims to estimate what information can be extracted on the velocity field at the core-mantle boundary, when the frozen flux equation is inverted under very weakly informative, but realistic, prior constraints. Instead of imposing a converging spectrum to the flow, we simply assume that its poloidal and toroidal energy spectra are characterized by power laws. The parameters of the spectra, namely, their magnitudes, and slopes are unknown. The connection between the velocity field, its spectra parameters, and the magnetic field model is established through the Bayesian formulation of the problem. Working in two steps, we determined the time-averaged spectra of the flow within the 2001–2009.5 period, as well as the flow itself and its associated uncertainties in 2005.0. According to the spectra we obtained, we can conclude that the large-scale approximation of the velocity field is not an appropriate assumption within the time window we considered. For the flow itself, we show that although it is dominated by its equatorial symmetric component, it is very unlikely to be perfectly symmetric. We also demonstrate that its geostrophic state is questioned in different locations of the outer core. Y1 - 2016 U6 - https://doi.org/10.1002/2015JB012464 SN - 2169-9313 SN - 2169-9356 VL - 121 SP - 1343 EP - 1364 PB - American Geophysical Union CY - Washington ER -