TY - THES A1 - Knopf, Brigitte T1 - On intrinsic uncertainties in earth system modelling T1 - Intrinsische Unsicherheiten in der Erdsystem Modellierung N2 - Uncertainties are pervasive in the Earth System modelling. This is not just due to a lack of knowledge about physical processes but has its seeds in intrinsic, i.e. inevitable and irreducible, uncertainties concerning the process of modelling as well. Therefore, it is indispensable to quantify uncertainty in order to determine, which are robust results under this inherent uncertainty. The central goal of this thesis is to explore how uncertainties map on the properties of interest such as phase space topology and qualitative dynamics of the system. We will address several types of uncertainty and apply methods of dynamical systems theory on a trendsetting field of climate research, i.e. the Indian monsoon. For the systematic analysis concerning the different facets of uncertainty, a box model of the Indian monsoon is investigated, which shows a saddle node bifurcation against those parameters that influence the heat budget of the system and that goes along with a regime shift from a wet to a dry summer monsoon. As some of these parameters are crucially influenced by anthropogenic perturbations, the question is whether the occurrence of this bifurcation is robust against uncertainties in parameters and in the number of considered processes and secondly, whether the bifurcation can be reached under climate change. Results indicate, for example, the robustness of the bifurcation point against all considered parameter uncertainties. The possibility of reaching the critical point under climate change seems rather improbable. A novel method is applied for the analysis of the occurrence and the position of the bifurcation point in the monsoon model against parameter uncertainties. This method combines two standard approaches: a bifurcation analysis with multi-parameter ensemble simulations. As a model-independent and therefore universal procedure, this method allows investigating the uncertainty referring to a bifurcation in a high dimensional parameter space in many other models. With the monsoon model the uncertainty about the external influence of El Niño / Southern Oscillation (ENSO) is determined. There is evidence that ENSO influences the variability of the Indian monsoon, but the underlying physical mechanism is discussed controversially. As a contribution to the debate three different hypotheses are tested of how ENSO and the Indian summer monsoon are linked. In this thesis the coupling through the trade winds is identified as key in linking these two key climate constituents. On the basis of this physical mechanism the observed monsoon rainfall data can be reproduced to a great extent. Moreover, this mechanism can be identified in two general circulation models (GCMs) for the present day situation and for future projections under climate change. Furthermore, uncertainties in the process of coupling models are investigated, where the focus is on a comparison of forced dynamics as opposed to fully coupled dynamics. The former describes a particular type of coupling, where the dynamics from one sub-module is substituted by data. Intrinsic uncertainties and constraints are identified that prevent the consistency of a forced model with its fully coupled counterpart. Qualitative discrepancies between the two modelling approaches are highlighted, which lead to an overestimation of predictability and produce artificial predictability in the forced system. The results suggest that bistability and intermittent predictability, when found in a forced model set-up, should always be cross-validated with alternative coupling designs before being taken for granted. All in this, this thesis contributes to the fundamental issue of dealing with uncertainties the climate modelling community is confronted with. Although some uncertainties allow for including them in the interpretation of the model results, intrinsic uncertainties could be identified, which are inevitable within a certain modelling paradigm and are provoked by the specific modelling approach. N2 - Die vorliegende Arbeit untersucht, auf welche Weise Unsicherheiten, wie sie in der integrierten Klima(folgen)forschung allgegenwärtig sind, die Stabilität und die Struktur dynamischer Systeme beeinflussen. Im Rahmen der Erdsystemmodellierung wird der Unsicherheitsanalyse zunehmend eine zentrale Bedeutung beigemessen. Einerseits können mit ihrer Hilfe disziplinäre Qualitäts-standards verbessert werden, andererseits ergibt sich die Chance, im Zuge von "Integrated Assessment" robuste entscheidungsrelevante Aussagen abzuleiten. Zur systematischen Untersuchung verschiedener Arten von Unsicherheit wird ein konzeptionelles Modell des Indischen Monsuns eingesetzt, das einen übergang von einem feuchten in ein trockenes Regime aufgrund einer Sattel-Knoten-Bifurkation in Abhängigkeit derjenigen Parameter zeigt, die die Wärmebilanz des Systems beeinflussen. Da einige dieser Parameter anthropogenen Einflüssen und Veränderungen unterworfen sind, werden zwei zentrale Punkte untersucht: zum einen, ob der Bifurkationspunkt robust gegenüber Unsicherheiten in Parametern und in Bezug auf die Anzahl und die Art der im Modell implementierten Prozesse ist und zum anderen, ob durch anthropogenen Einfluss der Bifurkationspunkt erreicht werden kann. Es zeigt sich unter anderem, dass das Auftreten der Bifurkation überaus robust, die Lage des Bifurkationspunktes im Phasenraum ist hingegen sehr sensitiv gegenüber Parameterunsicherheiten ist. Für diese Untersuchung wird eine neuartige Methode zur Untersuchung des Auftretens und der Lage einer Bifurkation gegenüber Unsicherheiten im hochdimensionalen Parameterraum entwickelt, die auf der Kombination einer Bifurkationsanalyse mit einer multi parametrischen Ensemble Simulation basiert. Mit dem Monsunmodell wird des weiteren die Unsicherheit bezüglich des externen Einflusses von El Niño / Southern Oscillation (ENSO) untersucht. Es ist bekannt, dass durch ENSO die Variabilität des Indischen Monsun beeinflußt wird, wohingegen der zu Grunde liegende Mechanismus kontrovers diskutiert wird. In dieser Arbeit werden drei verschiedene Hypothesen zur Kopplung zwischen diesen beiden Phänomenen untersucht. Es kann gezeigt werden, dass die Passat Winde einen Schlüsselmechanismus für den Einfluß von ENSO auf den Indischen Monsun darstellen. Mit Hilfe dieses Mechanismus können die beobachteten Niederschlagsdaten des Monsuns zu einem großen Anteil reproduziert werden. Zudem kann dieser Mechanismus kann auch in zwei globalen Zirkulationsmodellen (GCMs) für den heutigen Zustand und für ein Emissionsszenario unter Klimawandel identifiziert werden. Im weiteren Teil der Arbeit werden intrinsische Unsicherheiten identifiziert, die den Unterschied zwischen der Kopplung von Teilmodulen und dem Vorschreiben von einzelnen dieser Module durch Daten betreffen. Untersucht werden dazu ein getriebenes GCM-Ensemble und ein konzeptionelles Ozean-Atmosphären-Modell, das eine strukturierte Analyse anhand von Methoden der Theorie dynamischer Systeme ermöglicht. In den meisten Fällen kann die getriebene Version, in der ein Teil der Dynamik als externer Antrieb vorschrieben wird, das voll gekoppelte Pendant nachbilden. Es wird gezeigt, dass es jedoch auch Regionen im Phasen- und Parameterraum gibt, in dem sich die zwei Modellierungsansätze signifikant unterscheiden und unter anderem zu einer überschätzung der Vorhersagbarkeit und zu künstlichen Zuständen im getriebenen System führen. Die Ergebnisse legen den Schluss nahe, dass immer auch alternative Kopplungsmechanismen getestet werden müssen bevor das getriebene System als adäquate Beschreibung des gekoppelten Gesamtsystems betrachtet werden kann. Anhand der verschiedenen Anwendungen der Unsicherheitsanalyse macht die Arbeit deutlich, dass zum einen Unsicherheiten intrinsisch durch bestimmte Arten der Modellierung entstehen und somit unvermeidbar innerhalb eines Modellierungsansatzes sind, dass es zum anderen aber auch geeignete Methoden gibt, Unsicherheiten in die Modellierung und in die Bewertung von Modellergebnissen einzubeziehen. KW - Unsicherheit KW - Monsun KW - Klimatologie KW - Nichtlineare Dynamik KW - Unsicherheitsanalyse KW - Bifurkationsanalyse KW - Indischer Monsun KW - Modellkopplung KW - nonlinear dynamics KW - uncertainty analysis KW - bifurcation analysis KW - Indian Monsoon KW - model coupling Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-10949 ER - TY - THES A1 - Schneider von Deimling, Thomas T1 - Constraining uncertainty in climate sensitivity : an ensemble simulation approach based on glacial climate T1 - Einschränkung der Unsicherheit in der Klimasensitivität : ein Ensemble Simulationsansatz basierend auf dem glazialen Klima N2 - Uncertainty about the sensitivity of the climate system to changes in the Earth’s radiative balance constitutes a primary source of uncertainty for climate projections. Given the continuous increase in atmospheric greenhouse gas concentrations, constraining the uncertainty range in such type of sensitivity is of vital importance. A common measure for expressing this key characteristic for climate models is the climate sensitivity, defined as the simulated change in global-mean equilibrium temperature resulting from a doubling of atmospheric CO2 concentration. The broad range of climate sensitivity estimates (1.5-4.5°C as given in the last Assessment Report of the Intergovernmental Panel on Climate Change, 2001), inferred from comprehensive climate models, illustrates that the strength of simulated feedback mechanisms varies strongly among different models. The central goal of this thesis is to constrain uncertainty in climate sensitivity. For this objective we first generate a large ensemble of model simulations, covering different feedback strengths, and then request their consistency with present-day observational data and proxy-data from the Last Glacial Maximum (LGM). Our analyses are based on an ensemble of fully-coupled simulations, that were realized with a climate model of intermediate complexity (CLIMBER-2). These model versions cover a broad range of different climate sensitivities, ranging from 1.3 to 5.5°C, and have been generated by simultaneously perturbing a set of 11 model parameters. The analysis of the simulated model feedbacks reveals that the spread in climate sensitivity results from different realizations of the feedback strengths in water vapour, clouds, lapse rate and albedo. The calculated spread in the sum of all feedbacks spans almost the entire plausible range inferred from a sampling of more complex models. We show that the requirement for consistency between simulated pre-industrial climate and a set of seven global-mean data constraints represents a comparatively weak test for model sensitivity (the data constrain climate sensitivity to 1.3-4.9°C). Analyses of the simulated latitudinal profile and of the seasonal cycle suggest that additional present-day data constraints, based on these characteristics, do not further constrain uncertainty in climate sensitivity. The novel approach presented in this thesis consists in systematically combining a large set of LGM simulations with data information from reconstructed regional glacial cooling. Irrespective of uncertainties in model parameters and feedback strengths, the set of our model versions reveals a close link between the simulated warming due to a doubling of CO2, and the cooling obtained for the LGM. Based on this close relationship between past and future temperature evolution, we define a method (based on linear regression) that allows us to estimate robust 5-95% quantiles for climate sensitivity. We thus constrain the range of climate sensitivity to 1.3-3.5°C using proxy-data from the LGM at low and high latitudes. Uncertainties in glacial radiative forcing enlarge this estimate to 1.2-4.3°C, whereas the assumption of large structural uncertainties may increase the upper limit by an additional degree. Using proxy-based data constraints for tropical and Antarctic cooling we show that very different absolute temperature changes in high and low latitudes all yield very similar estimates of climate sensitivity. On the whole, this thesis highlights that LGM proxy-data information can offer an effective means of constraining the uncertainty range in climate sensitivity and thus underlines the potential of paleo-climatic data to reduce uncertainty in future climate projections. N2 - Eine der entscheidenden Hauptquellen für Unsicherheiten von Klimaprojektionen ist, wie sensitiv das Klimasystem auf Änderungen der Strahlungsbilanz der Erde reagiert. Angesichts des kontinuierlichen Anstiegs der atmosphärischen Treibhausgaskonzentrationen ist die Einschränkung des Unsicherheitsbereichs dieser Sensitivität von entscheidender Bedeutung. Ein häufig verwendetes Maß zur Beschreibung dieser charakteristischen Kenngröße von Klimamodellen ist die sogenannte Klimasensitivität, definiert als die Gleichgewichtsänderung der simulierten globalen Mitteltemperatur, welche sich aus einer Verdoppelung des atmosphärischen CO2-Gehalts ergibt. Die breite Spanne der geschätzten Klimasensitivität (1.5-4.5°C), welche ein Vergleich verschiedener komplexer Klimamodelle nahe legt (IPCC, 2001), verdeutlicht, wie groß die Unsicherheit in der Klimasensitivität ist. Diese Unsicherheit resultiert in erster Linie aus Unterschieden in der Simulation der entscheidenden Rückkopplungs-mechanismen in den verschiedenen Modellen. Das zentrale Ziel dieser Dissertation ist die Einschränkung des breiten Unsicherheitsbereichs der Klimasensitivität. Zunächst wird hierzu ein großes Ensemble an Modellsimulationen erzeugt, in welchem gezielt spezifische Modellparameter variiert, und somit unterschiedliche Rückkopplungsstärken der einzelnen Modellversionen realisiert werden. Diese Simulationen werden dann auf ihre Konsistenz mit sowohl heutigen Beobachtungsdaten, als auch Proxy-Daten des Letzten Glazialen Maximums (LGM) überprüft. Unsere Analysen basieren dabei auf einem Ensemble voll gekoppelter Modellläufe, welche mit einem Klimamodell intermediärer Komplexität (CLIMBER-2) realisiert wurden. Die betrachteten Modellversionen decken eine breite Spanne verschiedener Klimasensitivitäten (1.3-5.5°C) ab und wurden durch gleichzeitiges Variieren von 11 Modellparametern erzeugt. Die Analyse der simulierten Rückkopplungs-mechanismen offenbart, dass unterschiedliche Werte der Klimasensitivität in unserem Modellensemble durch verschiedene Realisierungen der Rückkopplungsstärken von Wasserdampf, Wolken, Temperatur-Vertikalprofil und Albedo zu erklären sind. Die berechneten Gesamt-Rückkopplungsstärken unser Modellversionen decken hierbei fast den gesamten möglichen Bereich von komplexeren Modellen ab. Wir zeigen, dass sich die Forderung nach Konsistenz zwischen simuliertem vorindustriellem Klima und Messdaten, die auf einer Wahl von sieben global gemittelten Datensätzen basieren, als vergleichsweise schwacher Test der Modellsensitivität erweist: Die Daten schränken den plausiblen Bereich der Klimasensitivität lediglich auf 1.3-4.9°C ein. Zieht man neben den genannten global gemittelten Messdaten außerdem klimatische Informationen aus Jahreszeit und geografischer Breite hinzu, lässt sich die Unsicherheit in der Klimasensitivität nicht weiter einschränken. Der neue Ansatz dieser Dissertation besteht darin, in systematischer Weise einen großen Satz an LGM-Simulationen mit Dateninformationen über die rekonstruierte glaziale Abkühlung bestimmter Regionen zu kombinieren. Unabhängig von den Unsicherheiten in Modellparametern und Rückkopplungsstärken offenbaren unsere Modellversionen eine ausgeprägte Beziehung zwischen der simulierten Erwärmung aufgrund der CO2-Verdoppelung und der Abkühlung im LGM. Basierend auf dieser engen Beziehung zwischen vergangener und zukünftiger Temperaturentwicklung definieren wir eine Methode (basierend auf linearer Regression), welche es uns erlaubt, robuste 5-95%-Quantile der Klimasensitivität abzuschätzen. Indem wir Proxy-Daten des LGM von niederen und hohen Breiten heranziehen, können wir die Unsicherheitsspanne der Klimasensitivität auf 1.3-3.5°C beschränken. Unsicherheiten im glazialen Strahlungsantrieb vergrößern diese Abschätzung auf 1.2-4.3°C, wobei die Annahme von großen strukturellen Unsicherheiten die obere Grenze um ein weiteres Grad erhöhen kann. Indem wir Proxy-Daten über tropische und antarktische Abkühlung betrachten, können wir zeigen, dass sehr unterschiedliche absolute Temperatur-Änderungen in hohen und niederen Breiten zu sehr ähnlichen Abschätzungen der Klimasensitivität führen. Vor dem Hintergrund unserer Ergebnisse zeigt diese Dissertation, dass LGM-Proxy-Daten ein effektives Mittel zur Einschränkung des Unsicherheitsbereichs der Klimasensitivität sein können und betont somit das Potenzial von Paläoklimadaten, den großen Unsicherheitsbereich von Klimaprojektionen zu reduzieren. KW - Dynamische Modellierung KW - Potsdam / Potsdam-Institut für Klimafolgenforschung KW - Entscheidung bei Unsicherheit KW - Klimasensitivität KW - Klimaprognose KW - Unsicherheitsanalyse KW - Ensemble-Simulation KW - Letztes Glaziales Maximum KW - climate sensitivity KW - climate projection KW - uncertainty analysis KW - ensemble simulation KW - Last Glacial Maximum Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7778 ER -