TY - JOUR A1 - Zhang, Yanqiu A1 - Chen, Daizhao A1 - Zhou, Xiqiang A1 - Guo, Zenghui A1 - Wei, Wenwen A1 - Mutti, Maria T1 - Depositional facies and stratal cyclicity of dolomites in the Lower Qiulitag Group (Upper Cambrian) in northwestern Tarim Basin, NW China JF - Facies : an international journal of palaeontology, sedimentology, geology N2 - The Upper Cambrian Lower Qiulitag Group in the Tarim Basin, NW China, is overwhelmingly composed of cyclic dolomites. Based on extensive field investigations and facies analysis from four outcrop sections in the Bachu-Keping area, northwestern Tarim Basin, four main types of facies are recognized: open-marine subtidal, restricted shallow subtidal, intertidal, and supratidal facies, and these are further subdivided into ten lithofacies. In general, these facies are vertically arranged into shallowing-upward, metre-scale cycles. These cycles are commonly composed of a thin basal horizon reflecting abrupt deepening, and a thicker upper succession showing gradual shallowing upwards. Based on the vertical facies arrangements and changes across boundary surfaces, two types of cycle: peritidal and shallow subtidal cycle, are further identified. The peritidal cycles, predominating over the lower-middle Lower Qiulitag Group, commence with shallow subtidal to lower intertidal facies and are capped by inter-supratidal facies. In contrast, the shallow subtidal cycles, dominating the upper Lower Qiulitag Group, are capped by shallow-subtidal facies. Based on vertical lithofacies variations, cycle stacking patterns, and accommodation variations revealed by Fischer plots, six larger-scale third-order depositional sequences (Sq1-Sq6) are recognized. These sequences generally consist of a lower transgressive and an upper regressive systems tract. The transgressive tracts are dominated by thicker-than-average cycles, indicating an overall accommodation increase, whereas the regressive tracts are characterized by thinner-than-average peritidal cycles, indicating an overall accommodation decrease. The sequence boundaries are characterized by transitional zones of stacked thinner-than-average cycles, rather than by a single surface. These sequences can further be grouped into lower-order sequence sets: the lower and upper sequence sets. The lower sequence set, including Sq1-Sq3, is characterized by peritidal facies-dominated sequences and a progressive decrease in accommodation space, indicating a longer-term fall in sea level. In contrast, the upper sequence set (Sq4-Sq6) is characterized by subtidal facies-dominated sequences and a progressive increase in accommodation space, indicating a longer-term rise in sea level. KW - Dolomites KW - Facies KW - Stratal cyclicity KW - Sequences KW - Upper Cambrian KW - Tarim Basin KW - China Y1 - 2015 U6 - https://doi.org/10.1007/s10347-014-0417-1 SN - 0172-9179 SN - 1612-4820 VL - 61 IS - 1 PB - Springer CY - New York ER - TY - JOUR A1 - Yang, Wei A1 - Dupont-Nivet, Guillaume A1 - Jolivet, Marc A1 - Guo, Zhaojie A1 - Bougeois, Laurie A1 - Bosboom, Roderic A1 - Zhang, Ziya A1 - Zhu, Bei A1 - Heilbronn, Gloria T1 - Magnetostratigraphic record of the early evolution of the southwestern Tian Shan foreland basin (Ulugqat area), interactions with Pamir indentation and India-Asia collision JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - The Tian Shan range is an inherited intracontinental structure reactivated by the far-field effects of the India-Asia collision. A growing body of thermochronology and magnetostratigraphy datasets shows that the range grew through several tectonic pulses since similar to 25 Ma, however the early Cenozoic history remains poorly constrained. The time-lag between the Eocene India-Asia collision and the Miocene onset of Tian Shan exhumation is particularly enigmatic. This peculiar period is potentially recorded along the southwestern Tian Shan piedmont. There, late Eocene marine deposits of the proto-Paratethys epicontinental sea transition to continental foreland basin sediments of unknown age were recently dated. We provide magnetostratigraphic dating of these continental sediments from the 1700-m-thick Mine section integrated with previously published detrital apatite fission track and U/Pb zircon ages. The most likely correlation to the geomagnetic polarity time scale indicates an age span from 20.8 to 13.3 Ma with a marked increase in accumulation rates at 19-18 Ma. This implies that the entire Oligocene period is missing between the last marine and first continental sediments, as suggested by previous southwestern Tian Shan results. This differs from the southwestern Tarim basin where Eocene marine deposits are continuously overlain by late Eocene-Oligocene continental sediments. This supports a simple evolution model of the western Tarim basin with Eocene-Oligocene foreland basin activation to the south related to northward thrusting of the Kunlun Shan, followed by early Miocene activation of northern foreland basin related to overthrusting of the south Tian Shan. Our data also support southward propagation of the Tian Shan piedmont from 20 to 18 Ma that may relate to motion on the Talas Fergana Fault. The coeval activation of a major right-lateral strike-slip system allowing indentation of the Pamir Salient into the Tarim basin, suggests far-field deformation from the India-Asia collision zone affected the Tian Shan and the Talas Fergana fault by early Miocene. (C) 2015 Elsevier B.V. All rights reserved. KW - Magnetostratigraphy KW - Cenozoic KW - Tian Shan KW - Pamir KW - Tarim Basin KW - Tectonics Y1 - 2015 U6 - https://doi.org/10.1016/j.tecto.2015.01.003 SN - 0040-1951 SN - 1879-3266 VL - 644 SP - 122 EP - 137 PB - Elsevier CY - Amsterdam ER -