TY - JOUR A1 - Mueller, Juliane A1 - Martinez-Valdes, Eduardo Andrés A1 - Stoll, Josefine A1 - Mueller, Steffen A1 - Engel, Tilman A1 - Mayer, Frank T1 - Differences in neuromuscular activity of ankle stabilizing muscles during postural disturbances BT - a gender-specific analysis JF - Gait & posture N2 - The purpose was to examine gender differences in ankle stabilizing muscle activation during postural disturbances. Seventeen participants (9 females: 27 +/- 2yrs., 1.69 +/- 0.1 m, 63 +/- 7 kg; 8 males: 29 +/- 2yrs., 1.81 +/- 0.1 m; 83 +/- 7 kg) were included in the study. After familiarization on a split-belt-treadmill, participants walked (1 m/s) while 15 right-sided perturbations were randomly applied 200 ms after initial heel contact. Muscle activity of M. tibialis anterior (TA), peroneus longus (PL) and gastrocnemius medialis (GM) was recorded during unperturbed and perturbed walking. The root mean square (RMS; [%]) was analyzed within 200 ms after perturbation. Co-activation was quantified as ratio of antagonist (GM)/agonist (TA) EMG-RMS during unperturbed and perturbed walking. Time to onset was calculated (ms). Data were analyzed descriptively (mean +/- SD) followed by three-way-ANOVA (gender/condition/muscle; alpha= 0.05). Perturbed walking elicited higher EMG activity compared to normal walking for TA and PL in both genders (p < 0.000). RMS amplitude gender comparisons revealed an interaction between gender and condition (F = 4.6, p = 0.049) and, a triple interaction among gender, condition and muscle (F = 4.7, p = 0.02). Women presented significantly higher EMG-RMS [%] PL amplitude than men during perturbed walking (mean difference = 209.6%, 95% confidence interval = -367.0 to -52.2%, p < 0.000). Co-activation showed significant lower values for perturbed compared to normal walking (p < 0.000), without significant gender differences for both walking conditions. GM activated significantly earlier than TA and PL (p < 0.01) without significant differences between the muscle activation onsets of men and women (p = 0.7). The results reflect that activation strategies of the ankle encompassing muscles differ between genders. In provoked stumbling, higher PL EMG activity in women compared to men is present. Future studies should aim to elucidate if this specific behavior has any relationship with ankle injury occurrence between genders. KW - Lower extremity KW - EMG KW - Perturbation KW - Split-belt treadmill KW - Ankle Y1 - 2018 U6 - https://doi.org/10.1016/j.gaitpost.2018.01.023 SN - 0966-6362 SN - 1879-2219 VL - 61 SP - 226 EP - 231 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Mueller, Juliane A1 - Stoll, Josefine A1 - Mueller, Steffen A1 - Mayer, Frank T1 - Dose-response relationship of core-specific sensorimotor interventions in healthy, welltrained participants BT - study protocol for a (MiSpEx) randomized controlled trial JF - Trials N2 - Background: Core-specific sensorimotor exercises are proven to enhance neuromuscular activity of the trunk, improve athletic performance and prevent back pain. However, the dose-response relationship and, therefore, the dose required to improve trunk function is still under debate. The purpose of the present trial will be to compare four different intervention strategies of sensorimotor exercises that will result in improved trunk function. Methods/design: A single-blind, four-armed, randomized controlled trial with a 3-week (home-based) intervention phase and two measurement days pre and post intervention (M1/M2) is designed. Experimental procedures on both measurement days will include evaluation of maximum isokinetic and isometric trunk strength (extension/flexion, rotation) including perturbations, as well as neuromuscular trunk activity while performing strength testing. The primary outcome is trunk strength (peak torque). Neuromuscular activity (amplitude, latencies as a response to perturbation) serves as secondary outcome. The control group will perform a standardized exercise program of four sensorimotor exercises (three sets of 10 repetitions) in each of six training sessions (30 min duration) over 3 weeks. The intervention groups’ programs differ in the number of exercises, sets per exercise and, therefore, overall training amount (group I: six sessions, three exercises, two sets; group II: six sessions, two exercises, two sets; group III: six sessions, one exercise, three sets). The intervention programs of groups I, II and III include additional perturbations for all exercises to increase both the difficulty and the efficacy of the exercises performed. Statistical analysis will be performed after examining the underlying assumptions for parametric and non-parametric testing. Discussion: The results of the study will be clinically relevant, not only for researchers but also for (sports) therapists, physicians, coaches, athletes and the general population who have the aim of improving trunk function. KW - Sensorimotor training KW - Perturbation KW - Exercise KW - MiSpEx Y1 - 2018 U6 - https://doi.org/10.1186/s13063-018-2799-9 SN - 1745-6215 VL - 19 IS - 424 PB - BioMed Central CY - London ER - TY - GEN A1 - Mueller, Juliane A1 - Stoll, Josefine A1 - Mueller, Steffen A1 - Mayer, Frank T1 - Dose-response relationship of core-specific sensorimotor interventions in healthy, welltrained participants BT - study protocol for a (MiSpEx) randomized controlled trial T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - Background: Core-specific sensorimotor exercises are proven to enhance neuromuscular activity of the trunk, improve athletic performance and prevent back pain. However, the dose-response relationship and, therefore, the dose required to improve trunk function is still under debate. The purpose of the present trial will be to compare four different intervention strategies of sensorimotor exercises that will result in improved trunk function. Methods/design: A single-blind, four-armed, randomized controlled trial with a 3-week (home-based) intervention phase and two measurement days pre and post intervention (M1/M2) is designed. Experimental procedures on both measurement days will include evaluation of maximum isokinetic and isometric trunk strength (extension/flexion, rotation) including perturbations, as well as neuromuscular trunk activity while performing strength testing. The primary outcome is trunk strength (peak torque). Neuromuscular activity (amplitude, latencies as a response to perturbation) serves as secondary outcome. The control group will perform a standardized exercise program of four sensorimotor exercises (three sets of 10 repetitions) in each of six training sessions (30 min duration) over 3 weeks. The intervention groups’ programs differ in the number of exercises, sets per exercise and, therefore, overall training amount (group I: six sessions, three exercises, two sets; group II: six sessions, two exercises, two sets; group III: six sessions, one exercise, three sets). The intervention programs of groups I, II and III include additional perturbations for all exercises to increase both the difficulty and the efficacy of the exercises performed. Statistical analysis will be performed after examining the underlying assumptions for parametric and non-parametric testing. Discussion: The results of the study will be clinically relevant, not only for researchers but also for (sports) therapists, physicians, coaches, athletes and the general population who have the aim of improving trunk function. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 499 KW - Sensorimotor training KW - Perturbation KW - Exercise KW - MiSpEx Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-422414 SN - 1866-8364 IS - 499 ER - TY - JOUR A1 - Müller, Juliane A1 - Stoll, Josefine A1 - Mueller, Steffen A1 - Mayer, Frank T1 - Dose-response relationship of core-specific sensorimotor interventions in healthy, well-trained participants BT - study protocol for a (MiSpEx) randomized controlled trial JF - Trials N2 - Background: Core-specific sensorimotor exercises are proven to enhance neuromuscular activity of the trunk, improve athletic performance and prevent back pain. However, the dose-response relationship and, therefore, the dose required to improve trunk function is still under debate. The purpose of the present trial will be to compare four different intervention strategies of sensorimotor exercises that will result in improved trunk function. Discussion: The results of the study will be clinically relevant, not only for researchers but also for (sports) therapists, physicians, coaches, athletes and the general population who have the aim of improving trunk function. KW - Sensorimotor training KW - Perturbation KW - Exercise KW - MiSpEx Y1 - 2018 U6 - https://doi.org/10.1186/s13063-018-2799-9 SN - 1745-6215 VL - 19 PB - BMC CY - London ER - TY - JOUR A1 - Mueller, Steffen A1 - Mueller, Juliane A1 - Stoll, Josefine A1 - Mayer, Frank T1 - Effect of six-week resistance and sensorimotor training on trunk strength and stability in elite adolescent athletes BT - a randomized controlled pilot trial JF - Frontiers in physiology N2 - Intervention in the form of core-specific stability exercises is evident to improve trunk stability. The purpose was to assess the effect of an additional 6 weeks sensorimotor or resistance training on maximum isokinetic trunk strength and response to sudden dynamic trunk loading (STL) in highly trained adolescent athletes. The study was conducted as a single-blind, 3-armed randomized controlled trial. Twenty-four adolescent athletes (14f/10 m, 16 +/- 1 yrs.;178 +/- 10 cm; 67 +/- 11 kg; training sessions/week 15 +/- 5; training h/week 22 +/- 8) were randomized into resistance training (RT; n = 7), sensorimotor training (SMT; n = 10), and control group (CG; n = 7). Athletes were instructed to perform standardized, center-based training for 6 weeks, two times per week, with a duration of 1 h each session. SMT consisted of four different core-specific sensorimotor exercises using instable surfaces. RT consisted of four trunk strength exercises using strength training machines, as well as an isokinetic dynamometer. All participants in the CG received an unspecific heart frequency controlled, ergometer-based endurance training (50 min at max. heart frequency of 130HF). For each athlete, each training session was documented in an individual training diary (e.g., level of SMT exercise; 1RM for strength exercise, pain). At baseline (M1) and after 6 weeks of intervention (M2), participants' maximum strength in trunk rotation (ROM:63 degrees) and flexion/extension (ROM:55 degrees) was tested on an isokinetic dynamometer (concentric/eccentric 30 degrees/s). STL was assessed in eccentric (30 degrees/s) mode with additional dynamometer-induced perturbation as a marker of core stability. Peak torque [Nm] was calculated as the main outcome. The primary outcome measurements (trunk rotation/extension peak torque: con, ecc, STL) were statistically analyzed by means of the two-factor repeated measures analysis of variance (alpha = 0.05). Out of 12 possible sessions, athletes participated between 8 and 9 sessions (SMT: 9 +/- 3; RT: 8 +/- 3; CG: 8 +/- 4). Regarding main outcomes of trunk performance, experimental groups showed no significant pre-post difference for maximum trunk strength testing as well as for perturbation compensation (p > 0.05). It is concluded, that future interventions should exceed 6 weeks duration with at least 2 sessions per week to induce enhanced trunk strength or compensatory response to sudden, high-intensity trunk loading in already highly trained adolescent athletes, regardless of training regime. KW - core KW - training intervention KW - trunk stability KW - exercise KW - perturbation Y1 - 2022 U6 - https://doi.org/10.3389/fphys.2022.802315 SN - 1664-042X VL - 13 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Eichler, Sarah A1 - Rabe, Sophie A1 - Salzwedel, Annett A1 - Mueller, Steffen A1 - Stoll, Josefine A1 - Tilgner, Nina A1 - John, Michael A1 - Wegscheider, Karl A1 - Mayer, Frank A1 - Völler, Heinz T1 - Effectiveness of an interactive telerehabilitation system with home-based exercise training in patients after total hip or knee replacement: study protocol for a multicenter, superiority, no-blinded randomized controlled trial JF - Trials N2 - Background: Total hip or knee replacement is one of the most frequently performed surgical procedures. Physical rehabilitation following total hip or knee replacement is an essential part of the therapy to improve functional outcomes and quality of life. After discharge from inpatient rehabilitation, a subsequent postoperative exercise therapy is needed to maintain functional mobility. Telerehabilitation may be a potential innovative treatment approach. We aim to investigate the superiority of an interactive telerehabilitation intervention for patients after total hip or knee replacement, in comparison to usual care, regarding physical performance, functional mobility, quality of life and pain. Methods/design: This is an open, randomized controlled, multicenter superiority study with two prospective arms. One hundred and ten eligible and consenting participants with total knee or hip replacement will be recruited at admission to subsequent inpatient rehabilitation. After comprehensive, 3-week, inpatient rehabilitation, the intervention group performs a 3-month, interactive, home-based exercise training with a telerehabilitation system. For this purpose, the physiotherapist creates an individual training plan out of 38 different strength and balance exercises which were implemented in the system. Data about the quality and frequency of training are transmitted to the physiotherapist for further adjustment. Communication between patient and physiotherapist is possible with the system. The control group receives voluntary, usual aftercare programs. Baseline assessments are investigated after discharge from rehabilitation; final assessments 3 months later. The primary outcome is the difference in improvement between intervention and control group in 6-minute walk distance after 3 months. Secondary outcomes include differences in the Timed Up and Go Test, the Five-Times-Sit-to-Stand Test, the Stair Ascend Test, the Short-Form 36, the Western Ontario and McMaster Universities Osteoarthritis Index, the International Physical Activity Questionnaire, and postural control as well as gait and kinematic parameters of the lower limbs. Baseline-adjusted analysis of covariance models will be used to test for group differences in the primary and secondary endpoints. Discussion: We expect the intervention group to benefit from the interactive, home-based exercise training in many respects represented by the study endpoints. If successful, this approach could be used to enhance the access to aftercare programs, especially in structurally weak areas. KW - Telerehabilitation KW - Home-based KW - Total hip replacement KW - Total knee replacement KW - Exercise therapy KW - Aftercare Y1 - 2017 U6 - https://doi.org/10.1186/s13063-017-2173-3 SN - 1745-6215 VL - 18 PB - BioMed Central CY - London ER - TY - JOUR A1 - Mueller, Steffen A1 - Carlsohn, Anja A1 - Mueller, Juliane A1 - Baur, Heiner A1 - Mayer, Frank T1 - Influence of Obesity on Foot Loading Characteristics in Gait for Children Aged 1 to 12 Years JF - PLoS one N2 - Background Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1-12 years. Methods Results Mean walking velocity was 0.95 +/- 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p< 0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on the midfoot area and longitudinal foot arch showing characteristic foot loading patterns. Already the feet of one and two year old children are significantly affected. Childhood overweight and obesity is not compensated by the musculoskeletal system. To avoid excessive foot loading with potential risk of discomfort or pain in childhood, prevention strategies should be developed and validated for children with a high body mass index and functional changes in the midfoot area. The presented plantar pressure values could additionally serve as reference data to identify suspicious foot loading patterns in children. Y1 - 2016 U6 - https://doi.org/10.1371/journal.pone.0149924 SN - 1932-6203 VL - 11 SP - 1710 EP - 1717 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Huang, Hongshi A1 - Guo, Jianqiao A1 - Yang, Jie A1 - Jiang, Yanfang A1 - Yu, Yuanyuan A1 - Mueller, Steffen A1 - Ren, Gexue A1 - Ao, Yingfang T1 - Isokinetic angle-specific moments and ratios characterizing hamstring and quadriceps strength in anterior cruciate ligament deficient knees JF - Scientific reports N2 - This study is intended to find more effective and robust clinical diagnostic indices to characterize muscle strength and coordination alternation following anterior cruciate ligament (ACL) rupture. To evaluate angle-specific moments and hamstring (H)/quadriceps (Q) ratios, 46 male subjects with unilateral chronic ACL-rupture performed isokinetic concentric (c), eccentric (e) quadriceps and hamstring muscle tests respectively at 60 degrees/s. Normalized moments and H/Q ratios were calculated for peak moment (PM) and 30 degrees, 40 degrees, 50 degrees, 60 degrees, 70 degrees, 80 degrees knee flexion angles. Furthermore, we introduced single-to-arithmetic-mean (SAM) and single-to-root-mean-square (SRMS) muscle co-contraction ratios, calculating them for specific angles and different contraction repetitions. Normalized PM and 40 degrees specific concentric quadriceps, concentric hamstring strength in the ACL-deficient knee were reduced significantly (P <= 0.05). Concentric angle-specific moments together with Qe/Qc ratios at 40 degrees (d = 0.766 vs. d = 0.654) identify more obvious differences than peak values in ACL ruptured limbs. Furthermore, we found SRMS-QeQc deficits at 40 degrees showed stronger effect than Qe/Qc ratios (d = 0.918 vs. d = 0.766), albeit other ratio differences remained basically the same effect size as the original H/Q ratios. All the newly defined SAM and SRMS indices could decrease variance. Overall, 40 degrees knee moments and SAM/ SRMS ratios might be new potential diagnosis indices for ACL rupture detection. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-06601-5 SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Khajooei, Mina A1 - Lin, Chiao-I A1 - Mayer, Frank A1 - Mueller, Steffen T1 - Muscle activity and strength in maximum isokinetic legpress testing with unstable footplates in active individuals JF - Isokinetics and exercise science : official journal of the European Isokinetic Society N2 - BACKGROUND: Compensating unstable situations is an important functional capability to maintain joint stability, to compensate perturbations and to prevent (re-)injury. Therefore, reduced maximum strength and altered neuromuscular activity are expected by inducing instability to load test situations. Possible effects are not clear for induced instability during maximum legpress tests in healthy individuals. OBJECTIVE: To compare isokinetic legpress (LP) strength and lower-leg muscle activity using stable (S) and unstable (UN) footplates. METHODS: 16 males (28 +/- 4 yrs, 179 +/- 7 cm, 75 +/- 8 kg) performed five maximum LP in concentric (CON) and eccentric (ECC) mode. The maximum force (Fmax) and muscle activity were measured under conditions of S and UN footplates. The tested muscles comprised of the tibialis anterior (TA), peroneus longus (PL) and soleus (SOL) and their activity were quantified against the MVIC of each muscle respectively. RESULTS: The main finding revealed a significant reduction in Fmax under UN condition: 11.9 +/- 11.3% in CON and 23.5 +/- 47.8% in ECC (P < 0.05). Significant findings were also noted regarding the RMS derived values of the EMG of PL and TA. CONCLUSION: Unstable LP reduced force generation and increased the activity of PL and TA muscles which confirmed greater neuromuscular effort to compensate instability. This may have some implications for resistance testing and training coupled with an unstable base in the prevention and rehabilitation of injury to the neuromusculoskeletal system. KW - Tibialis anterior KW - peroneus longus KW - soleus KW - instability Y1 - 2019 U6 - https://doi.org/10.3233/IES-182206 SN - 0959-3020 SN - 1878-5913 VL - 27 IS - 3 SP - 177 EP - 183 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Wochatz, Monique A1 - Rabe, Sophie A1 - Wolter, Martin A1 - Engel, Tilman A1 - Mueller, Steffen A1 - Mayer, Frank T1 - Muscle activity of upper and lower trapezius and serratus anterior during unloaded and maximal loaded shoulder flexion and extension JF - International Biomechanics N2 - Altered scapular muscle activity is mostly described under unloaded and submaximal loaded conditions in impingement patients. However, there is no clear evidence on muscle activity with respect to movement phases under maximum load in healthy subjects. Therefore, this study aimed to investigate scapular muscle activity under unloaded and maximum loaded isokinetic shoulder flexion and extension in regard to the movement phase. Fourteen adults performed unloaded (continuous passive motion [CPM]) as well as maximum loaded (concentric [CON], eccentric [ECC]) isokinetic shoulder flexion (Flex) and extension (Ext). Simultaneously, scapular muscle activity was measured by EMG. Root mean square was calculated for the whole ROM and four movement phases. Data were analyzed descriptively and by two-way repeated measures ANOVA. CPMFlex resulted in a linear increase of muscle activity for all muscles. Muscle activity during CONFlex and ECCFlex resulted in either constant activity levels or in an initial increase followed by a plateau in the second half of movement. CPMExt decreased with the progression of movement, whereas CONExt and ECCExt initially decreased and either levelled off or increased in the second half of movement. Scapular muscle activity of unloaded shoulder flexion and extension changed under maximum load showing increased activity levels and an altered pattern over the course of movement. KW - shoulder KW - scapular muscle activity KW - isokinetic testing KW - electromyography Y1 - 2017 U6 - https://doi.org/https://doi.org/10.1080/23335432.2017.1364668 VL - 4 IS - 2 SP - 68 EP - 76 PB - Elsevier CY - Amsterdam ER -