TY - JOUR A1 - Strecker, Manfred A1 - Alonso, Ricardo N. A1 - Bookhagen, Bodo A1 - Carrapa, Barbara A1 - Coutand, Isabelle A1 - Hain, Mathis P. A1 - Hilley, George E. A1 - Mortimer, Estelle A1 - Schoenbohm, Lindsay M. A1 - Sobel, Edward T1 - Does the topographic distribution of the central Andean Puna Plateau result from climatic or geodynamic processes? N2 - Orogenic plateaus are extensive, high-elevation areas with low internal relief that have been attributed to deep-seated and/or climate-driven surface processes. In the latter case, models predict that lateral plateau growth results from increasing aridity along the margins as range uplift shields the orogen interior from precipitation. We analyze the spatiotemporal progression of basin isolation and filling at the eastern margin of the Puna Plateau of the Argentine Andes to determine if the topography predicted by such models is observed. We find that the timing of basin filling and reexcavation is variable, suggesting nonsystematic plateau growth. Instead, the Airy isostatically compensated component of topography constitutes the majority of the mean elevation gain between the foreland and the plateau. This indicates that deep-seated phenomena, such as changes in crustal thickness and/or lateral density, are required to produce high plateau elevations. In contrast, the frequency of the uncompensated topography within the plateau and in the adjacent foreland that is interrupted by ranges appears similar, although the amplitude of this topographic component increases east of the plateau. Combined with sedimentologic observations, we infer that the low internal relief of the plateau likely results from increased aridity and sediment storage within the plateau and along its eastern margin. Y1 - 2009 UR - http://geology.gsapubs.org/ U6 - https://doi.org/10.1130/G25545a.1 SN - 0091-7613 ER - TY - JOUR A1 - Hain, Mathis P. A1 - Strecker, Manfred A1 - Bookhagen, Bodo A1 - Alonso, Ricardo N. A1 - Pingel, H. A1 - Schmitt, Axel K. T1 - Neogene to quaternary broken foreland formation and sedimentation dynamics in the Andes of NW Argentina (25 degrees S) JF - Tectonics N2 - The northwest Argentine Andes constitute a premier natural laboratory to assess the complex interactions between isolated uplifts, orographic precipitation gradients, and related erosion and sedimentation patterns. Here we present new stratigraphic observations and age information from intermontane basin sediments to elucidate the Neogene to Quaternary shortening history and associated sediment dynamics of the broken Salta foreland. This part of the Andean orogen, which comprises an array of basement-cored range uplifts, is located at similar to 25 degrees S and lies to the east of the arid intraorogenic Altiplano/Puna plateau. In the Salta foreland, spatially and temporally disparate range uplift along steeply dipping inherited faults has resulted in foreland compartmentalization with steep basin-tobasin precipitation gradients. Sediment architecture and facies associations record a three-phase (similar to 10, similar to 5, and <2 Ma), east directed, yet unsystematic evolution of shortening, foreland fragmentation, and ensuing changes in precipitation and sediment transport. The provenance signatures of these deposits reflect the trapping of sediments in the intermontane basins of the Andean hinterland, as well as the evolution of a severed fluvial network. Present-day moisture supply to the hinterland is determined by range relief and basin elevation. The conspiring effects of range uplift and low rainfall help the entrapment and long-term storage of sediments, ultimately raising basin elevation in the hinterland, which may amplify aridification in the orogen interior. Y1 - 2011 U6 - https://doi.org/10.1029/2010TC002703 SN - 0278-7407 VL - 30 IS - 11 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Hain, Mathis P. A1 - Sigman, Daniel M. A1 - Haug, Gerald H. T1 - Shortcomings of the isolated abyssal reservoir model for deglacial radiocarbon changes in the mid-depth Indo-Pacific Ocean JF - Geophysical research letters N2 - Severely negative Delta(14)C anomalies from the mid-depth Pacific and the Arabian Sea have been taken as support for the hypothesized deglacial release of a previously isolated, extremely (14)C-deplete deep ocean carbon reservoir. We report box model simulations that cast doubt on both the existence of the hypothesized deep reservoir and its ability to explain the mid-depth Delta(14)C anomalies. First, the degree of ice age isolation needed to substantially reduce the deep Delta(14)C of the deep reservoir causes anoxia and the trapping of alkalinity from CaCO(3) dissolution, the latter increasing atmospheric CO(2). Second, even with a completely (14)C-free deep reservoir, achieving the mid-depth Delta(14)C anomalies of observed duration requires ad hoc stifling of aspects of deep circulation to prevent rapid dissipation of the anomalous (14)C-free carbon to the rest of the ocean and the atmosphere. We suggest that the mid-depth anomalies do not record basin-scale Delta(14)C changes but are instead local phenomena. Y1 - 2011 U6 - https://doi.org/10.1029/2010GL046158 SN - 0094-8276 VL - 38 IS - 6 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Sigman, Daniel M. A1 - DiFiore, Peter J. A1 - Hain, Mathis P. A1 - Deutsch, Curtis A1 - Karl, David M. T1 - Sinking organic matter spreads the nitrogen isotope signal of pelagic denitrification in the North Pacific N2 - Culture studies of denitrifying bacteria predict that denitrification will generate equivalent gradients in the delta N-15 and delta O-18 of deep ocean nitrate. A depth profile of nitrate isotopes from the Hawaii Ocean Time-series Station ALOHA shows less of an increase in delta O-18 than in delta N-15 as one ascends from abyssal waters into the denitrification-impacted mid-depth waters. A box model of the ocean nitrate N and O isotopes indicates that this is the effect of the low latitude nitrate assimilation/regeneration cycle: organic N sinking out of the surface spreads the high-delta N-15 signal of pelagic denitrification into waters well below and beyond the suboxic zone, whereas the nitrate delta O-18 signal of denitrification can only be transmitted by circulation in the interior. Y1 - 2009 UR - http://www.agu.org/journals/gl/ U6 - https://doi.org/10.1029/2008gl035784 SN - 0094-8276 ER - TY - JOUR A1 - Sigman, Daniel M. A1 - DiFiore, Peter J. A1 - Hain, Mathis P. A1 - Deutsch, Curtis A1 - Wang, Yi A1 - Karl, David M. A1 - Knapp, Angela N. A1 - Lehmann, Moritz F. A1 - Pantoja, Silvio T1 - The dual isotopes of deep nitrate as a constraint on the cycle and budget of oceanic fixed nitrogen N2 - We compare the output of an 18-box geochemical model of the ocean with measurements to investigate the controls on both the mean values and variation of nitrate delta N-15 and delta O-18 in the ocean interior. The delta O-18 of nitrate is our focus because it has been explored less in previous work. Denitrification raises the delta N-15 and delta O-18 of mean ocean nitrate by equal amounts above their input values for N-2 fixation (for delta N-15) and nitrification (for delta O-18), generating parallel gradients in the delta N-15 and delta O-18 of deep ocean nitrate. Partial nitrate assimilation in the photic zone also causes equivalent increases in the delta N-15 and delta O-18 of the residual nitrate that can be transported into the interior. However, the regeneration and nitrification of sinking N can be said to decouple the N and O isotopes of deep ocean nitrate, especially when the sinking N is produced in a low latitude region, where nitrate consumption is effectively complete. The delta N-15 of the regenerated nitrate is equivalent to that originally consumed, whereas the regeneration replaces nitrate previously elevated in delta O-18 due to denitrification or nitrate assimilation with nitrate having the delta O-18 of nitrification. This lowers the delta O-18 of mean ocean nitrate and weakens nitrate delta O-18 gradients in the interior relative to those in delta N-15. This decoupling is characterized and quantified in the box model, and agreement with data shows its clear importance in the real ocean. At the same time, the model appears to generate overly strong gradients in both delta O-18 and delta N-15 within the ocean interior and a mean ocean nitrate delta O-18 that is higher than measured. This may be due to, in the model, too strong an impact of partial nitrate assimilation in the Southern Ocean on the delta N-15 and delta O-18 of preformed nitrate and/or too little cycling of intermediate-depth nitrate through the low latitude photic zone. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/09670637 U6 - https://doi.org/10.1016/j.dsr.2009.04.007 SN - 0967-0637 ER - TY - JOUR A1 - Sigman, Daniel M. A1 - Hain, Mathis P. A1 - Haug, Gerald H. T1 - The polar ocean and glacial cycles in atmospheric CO2 concentration N2 - Global climate and the atmospheric partial pressure of carbon dioxide (p(CO2atm)) are correlated over recent glacial cycles, with lower p(CO2atm) during ice ages, but the causes of the p(CO2atm) changes are unknown. The modern Southern Ocean releases deeply sequestered CO2 to the atmosphere. Growing evidence suggests that the Southern Ocean CO2 'leak' was stemmed during ice ages, increasing ocean CO2 storage. Such a change would also have made the global ocean more alkaline, driving additional ocean CO2 uptake. This explanation for lower ice-age p(CO2atm), if correct, has much to teach us about the controls on current ocean processes. Y1 - 2010 UR - http://www.nature.com/nature/ U6 - https://doi.org/10.1038/Nature09149 SN - 0028-0836 ER -