TY - THES A1 - Scholz, Matthias T1 - Approaches to analyse and interpret biological profile data T1 - Methoden zur Analyse und Interpretation biologischer Profildaten N2 - Advances in biotechnologies rapidly increase the number of molecules of a cell which can be observed simultaneously. This includes expression levels of thousands or ten-thousands of genes as well as concentration levels of metabolites or proteins. Such Profile data, observed at different times or at different experimental conditions (e.g., heat or dry stress), show how the biological experiment is reflected on the molecular level. This information is helpful to understand the molecular behaviour and to identify molecules or combination of molecules that characterise specific biological condition (e.g., disease). This work shows the potentials of component extraction algorithms to identify the major factors which influenced the observed data. This can be the expected experimental factors such as the time or temperature as well as unexpected factors such as technical artefacts or even unknown biological behaviour. Extracting components means to reduce the very high-dimensional data to a small set of new variables termed components. Each component is a combination of all original variables. The classical approach for that purpose is the principal component analysis (PCA). It is shown that, in contrast to PCA which maximises the variance only, modern approaches such as independent component analysis (ICA) are more suitable for analysing molecular data. The condition of independence between components of ICA fits more naturally our assumption of individual (independent) factors which influence the data. This higher potential of ICA is demonstrated by a crossing experiment of the model plant Arabidopsis thaliana (Thale Cress). The experimental factors could be well identified and, in addition, ICA could even detect a technical artefact. However, in continuously observations such as in time experiments, the data show, in general, a nonlinear distribution. To analyse such nonlinear data, a nonlinear extension of PCA is used. This nonlinear PCA (NLPCA) is based on a neural network algorithm. The algorithm is adapted to be applicable to incomplete molecular data sets. Thus, it provides also the ability to estimate the missing data. The potential of nonlinear PCA to identify nonlinear factors is demonstrated by a cold stress experiment of Arabidopsis thaliana. The results of component analysis can be used to build a molecular network model. Since it includes functional dependencies it is termed functional network. Applied to the cold stress data, it is shown that functional networks are appropriate to visualise biological processes and thereby reveals molecular dynamics. N2 - Fortschritte in der Biotechnologie ermöglichen es, eine immer größere Anzahl von Molekülen in einer Zelle gleichzeitig zu erfassen. Das betrifft sowohl die Expressionswerte tausender oder zehntausender Gene als auch die Konzentrationswerte von Metaboliten oder Proteinen. Diese Profildaten verschiedener Zeitpunkte oder unterschiedlicher experimenteller Bedingungen (z.B. unter Stressbedingungen wie Hitze oder Trockenheit) zeigen, wie sich das biologische Experiment auf molekularer Ebene widerspiegelt. Diese Information kann genutzt werden, um molekulare Abläufe besser zu verstehen und um Moleküle oder Molekül-Kombinationen zu bestimmen, die für bestimmte biologische Zustände (z.B.: Krankheit) charakteristisch sind. Die Arbeit zeigt die Möglichkeiten von Komponenten-Extraktions-Algorithmen zur Bestimmung der wesentlichen Faktoren, die einen Einfluss auf die beobachteten Daten ausübten. Das können sowohl die erwarteten experimentellen Faktoren wie Zeit oder Temperatur sein als auch unerwartete Faktoren wie technische Einflüsse oder sogar unerwartete biologische Vorgänge. Unter der Extraktion von Komponenten versteht man die Reduzierung dieser stark hoch-dimensionalen Daten auf wenige neue Variablen, die eine Kombination aus allen ursprünglichen Variablen darstellen und als Komponenten bezeichnet werden. Die Standard-Methode für diesen Zweck ist die Hauptkomponentenanalyse (PCA). Es wird gezeigt, dass - im Vergleich zur nur die Varianz maximierenden PCA - moderne Methoden wie die Unabhängige Komponentenanalyse (ICA) für die Analyse molekularer Datensätze besser geeignet sind. Die Unabhängigkeit von Komponenten in der ICA entspricht viel besser unserer Annahme individueller (unabhängiger) Faktoren, die einen Einfluss auf die Daten ausüben. Dieser Vorteil der ICA wird anhand eines Kreuzungsexperiments mit der Modell-Pflanze Arabidopsis thaliana (Ackerschmalwand) demonstriert. Die experimentellen Faktoren konnten dabei gut identifiziert werden und ICA erkannte sogar zusätzlich einen technischen Störfaktor. Bei kontinuierlichen Beobachtungen wie in Zeitexperimenten zeigen die Daten jedoch häufig eine nichtlineare Verteilung. Für die Analyse dieser nichtlinearen Daten wird eine nichtlinear erweiterte Methode der PCA angewandt. Diese nichtlineare PCA (NLPCA) basiert auf einem neuronalen Netzwerk-Algorithmus. Der Algorithmus wurde für die Anwendung auf unvollständigen molekularen Daten erweitert. Dies ermöglicht es, die fehlenden Werte zu schätzen. Die Fähigkeit der nichtlinearen PCA zur Bestimmung nichtlinearer Faktoren wird anhand eines Kältestress-Experiments mit Arabidopsis thaliana demonstriert. Die Ergebnisse aus der Komponentenanalyse können zur Erstellung molekularer Netzwerk-Modelle genutzt werden. Da sie funktionelle Abhängigkeiten berücksichtigen, werden sie als Funktionale Netzwerke bezeichnet. Anhand der Kältestress-Daten wird demonstriert, dass solche funktionalen Netzwerke geeignet sind, biologische Prozesse zu visualisieren und dadurch die molekularen Dynamiken aufzuzeigen. KW - Bioinformatik KW - Hauptkomponentenanalyse KW - Unabhängige Komponentenanalyse KW - Neuronales Netz KW - Maschinelles Lernen KW - Fehlende Daten KW - Ackerschmalwand KW - nichtlineare PCA (NLPCA) KW - molekulare Netzwerke KW - nonlinear PCA (NLPCA) KW - molecular networks Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7839 ER - TY - THES A1 - Robaina Estevez, Semidan T1 - Context-specific metabolic predictions T1 - Kontextspezifische metabolische Vorhersagen BT - computational methods and applications BT - Berechnungsmethoden und Anwendungen N2 - All life-sustaining processes are ultimately driven by thousands of biochemical reactions occurring in the cells: the metabolism. These reactions form an intricate network which produces all required chemical compounds, i.e., metabolites, from a set of input molecules. Cells regulate the activity through metabolic reactions in a context-specific way; only reactions that are required in a cellular context, e.g., cell type, developmental stage or environmental condition, are usually active, while the rest remain inactive. The context-specificity of metabolism can be captured by several kinds of experimental data, such as by gene and protein expression or metabolite profiles. In addition, these context-specific data can be assimilated into computational models of metabolism, which then provide context-specific metabolic predictions. This thesis is composed of three individual studies focussing on context-specific experimental data integration into computational models of metabolism. The first study presents an optimization-based method to obtain context-specific metabolic predictions, and offers the advantage of being fully automated, i.e., free of user defined parameters. The second study explores the effects of alternative optimal solutions arising during the generation of context-specific metabolic predictions. These alternative optimal solutions are metabolic model predictions that represent equally well the integrated data, but that can markedly differ. This study proposes algorithms to analyze the space of alternative solutions, as well as some ways to cope with their impact in the predictions. Finally, the third study investigates the metabolic specialization of the guard cells of the plant Arabidopsis thaliana, and compares it with that of a different cell type, the mesophyll cells. To this end, the computational methods developed in this thesis are applied to obtain metabolic predictions specific to guard cell and mesophyll cells. These cell-specific predictions are then compared to explore the differences in metabolic activity between the two cell types. In addition, the effects of alternative optima are taken into consideration when comparing the two cell types. The computational results indicate a major reorganization of the primary metabolism in guard cells. These results are supported by an independent 13C labelling experiment. N2 - Alle lebenserhaltenden Prozesse werden durch tausende biochemische Reaktionen in der Zelle bestimmt, welche den Metabolismus charakterisieren. Diese Reaktionen bilden ein komplexes Netzwerk, welches alle notwendigen chemischen Verbindungen, die sogenannten Metabolite, aus einer bestimmten Menge an Ausgangsmolekülen produziert Zellen regulieren ihren Stoffwechsel kontextspezifisch, dies bedeutet, dass nur Reaktionen die in einem zellulären Kontext, zum Beispiel Zelltyp, Entwicklungsstadium oder verschiedenen Umwelteinflüssen, benötigt werden auch tatsächlich aktiv sind. Die übrigen Reaktionen werden als inaktiv betrachtet. Die Kontextspezifität des Metabolismus kann durch verschiedene experimentelle Daten, wie Gen- und Proteinexpressionen oder Metabolitprofile erfasst werden. Zusätzlich können diese Daten in Computersimulationen des Metabolismus integriert werden, um kontextspezifische (metabolische) Vorhersagen zu treffen. Diese Doktorarbeit besteht aus drei unabhängigen Studien, welche die Integration von kontextspezifischen experimentellen Daten in Computersimulationen des Metabolismus thematisieren. Die erste Studie beschreibt ein Konzept, basierend auf einem mathematischen Optimierungsproblem, welches es erlaubt kontextspezifische, metabolische Vorhersagen zu treffen. Dabei bietet diese vollautomatische Methode den Vorteil vom Nutzer unabhängige Parameter, zu verwenden. Die zweite Studie untersucht den Einfluss von alternativen optimalen Lösungen, welche bei kontextspezifischen metabolischen Vorhersagen generiert werden. Diese alternativen Lösungen stellen metabolische Modellvorhersagen da, welche die integrierten Daten gleichgut wiederspiegeln, sich aber grundlegend voneinander unterscheiden können. Diese Studie zeigt verschiedene Ansätze alternativen Lösungen zu analysieren und ihren Einfluss auf die Vorhersagen zu berücksichtigen. Schlussendlich, untersucht die dritte Studie die metabolische Spezialisierung der Schließzellen in Arabidopsis thaliana und vergleicht diese mit einer weiteren Zellart, den Mesophyllzellen. Zu diesem Zweck wurden die in dieser Doktorarbeit vorgestellten Methoden angewandt um metabolische Vorhersagen speziell für Schließzellen und Mesophyllzellen zu erhalten. Anschließend wurden die zellspezifischen Vorhersagen auf Unterschiede in der metabolischen Aktivität der Zelltypen, unter Berücksichtigung des Effekt von alternativen Optima, untersucht. Die Ergebnisse der Simulationen legen eine grundlegende Neuorganisation des Primärmetabolismus in Schließzellen verglichen mit Mesophyllzellen nahe. Diese Ergebnisse werden durch unabhängige 13C markierungs Experimente bestätigt. KW - systems biology KW - bioinformatics KW - metabolic networks KW - constraint-based modeling KW - data integration KW - Systemsbiologie KW - Bioinformatik KW - Stoffwechselnetze KW - Constraint-basierte Modellierung KW - Datenintegration Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401365 ER - TY - THES A1 - Gómez-Porras, Judith Lucia T1 - In silico identification of genes regulated by abscisic acid in Arabidopsis thaliana (L.) Heynh. T1 - In silico Identifikation von Abszisinsaeure-regulierten Genen in Arabidopsis thaliana (L.) Heynh. N2 - Abscisic acid (ABA) is a major plant hormone that plays an important role during plant growth and development. During vegetative growth ABA mediates (in part) responses to various environmental stresses such as cold, drought and high salinity. The response triggered by ABA includes changes in the transcript level of genes involved in stress tolerance. The aim of this project was the In silico identification of genes putatively regulated by ABA in A. thaliana. In silico predictions were combined with experimental data in order to evaluate the reliability of computational predictions. Taking advantage of the genome sequence of A. thaliana publicly available since 2000, 1 kb upstream sequences were screened for combinations of cis-elements known to be involved in the regulation of ABA-responsive genes. It was found that around 10 to 20 percent of the genes of A. thaliana might be regulated by ABA. Further analyses of the predictions revealed that certain combinations of cis-elements that confer ABA-responsiveness were significantly over-represented compared with results in random sequences and with random expectations. In addition, it was observed that other combinations that confer ABA-responsiveness in monocotyledonous species might not be functional in A. thaliana. It is proposed that ABA-responsive genes in A. thaliana show pairs of ABRE (abscisic acid responsive element) with MYB binding sites, DRE (dehydration responsive element) or with itself. The analysis of the distances between pairs of cis-elements suggested that pairs of ABREs are bound by homodimers of ABRE binding proteins. In contrast, pairs between MYB binding sites and ABRE, or DRE and ABRE showed a distance between cis-elements that suggested that the binding proteins interact through protein complexes and not directly. The comparison of computational predictions with experimental data confirmed that the regulatory mechanisms leading to the induction or repression of genes by ABA is very incompletely understood. It became evident that besides the cis-elements proposed in this study to be present in ABA-responsive genes, other known and unknown cis-elements might play an important role in the transcriptional regulation of ABA-responsive genes. For example, auxin-related cis elements, or the cis-elements recognized by the NAM-family of transcription factors (Non-Apical meristem). This work documents the use of computational and experimental approaches to analyse possible interactions between cis-elements involved in the regulation of ABA-responsive genes. The computational predictions allowed the distinction between putatively relevant combinations of cis-elements from irrelevant combinations of cis-elements in ABA-responsive genes. The comparison with experimental data allowed to identify certain cis-elements that have not been previously associated to the ABA-mediated transcriptional regulation, but that might be present in ABA-responsive genes (e.g. auxin responsive elements). Moreover, the efforts to unravel the gene regulatory network associated with the ABA-signalling pathway revealed that NAM-transcription factors and their corresponding binding sequences are important components of this network. N2 - Pflanzen reagieren auf aeußere Stresseinwirkung (z.B. Trockenheit oder Hitze) u.a. mit der Bildung bestimmter Hormone. Diese Hormone wiederum bewirken eine Vielzahl komplexer Reaktionen (z.B. im Stoffwechsel und in der Genexpression), die zum Ziel haben, die Pflanzen widerstandsfaehiger gegen die Stresssituation zu machen. Ein wichtiges Stresshormon ist die Abzisinsaeure (ABA, fuer engl. „abscisic acid“). Experimentell koennen Pflanzen durch die Gabe von ABA zu Reaktionen gezwungen werden, die normalerweise nur unter Stressbedingungen beobachtet werden. Hierzu zaehlen vor allem eine Reduktion der Spaltoeffnungen in den Blaettern, um den Wasserverlust infolge von Transpiration zu minimieren, und eine massive Umprogrammierung der Genexpression. In der vorliegenden Arbeit wurde der Einfluss von ABA auf die Genexpression in der Modellpflanze Arabidopsis thaliana untersucht. Hierzu wurden bioinformatorische und experimentelle Ansaetze verknuepft. Die bioinformatorischen Ansaetze bedienten sich der bekannten Sequenz des Genoms von A. thaliana. Mit Hilfe verschiedener geeigneter Computerprogramme wurden im Genom Gene identifiziert, deren Expression potentiell durch ABA reguliert wird. Die so erhaltenen Vorhersagen der verschiedenen Programme wurden miteinander und mit eigenen als auch mit publizierten experimentellen Daten verglichen, um die Qualitaet der Vorhersagen zu beurteilen. Die wichtigste Schlussfolgerung aus den Ergebnissen dieser Arbeit ist, dass gegenwaertig bioinformatorische Ansaetze allein nicht ausreichen, um biologische Prozesse zufriedenstellend zu analysieren. In der vorliegenden Arbeit ermoeglichte erst eine Kombination aus bioinformatorischen und experimentellen Ansaetzen die Generierung neuer, abgesicherter Hypothesen zur ABA-induzierten Umprogrammierung der Genexpression. KW - Bioinformatik KW - Abszisinsäure KW - Promotoren KW - bioinformatics KW - regulation KW - ABA KW - Arabidopsis Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7401 ER - TY - THES A1 - Grimbs, Sergio T1 - Towards structure and dynamics of metabolic networks T1 - Struktur und Dynamik metabolischer Netzwerke N2 - This work presents mathematical and computational approaches to cover various aspects of metabolic network modelling, especially regarding the limited availability of detailed kinetic knowledge on reaction rates. It is shown that precise mathematical formulations of problems are needed i) to find appropriate and, if possible, efficient algorithms to solve them, and ii) to determine the quality of the found approximate solutions. Furthermore, some means are introduced to gain insights on dynamic properties of metabolic networks either directly from the network structure or by additionally incorporating steady-state information. Finally, an approach to identify key reactions in a metabolic networks is introduced, which helps to develop simple yet useful kinetic models. The rise of novel techniques renders genome sequencing increasingly fast and cheap. In the near future, this will allow to analyze biological networks not only for species but also for individuals. Hence, automatic reconstruction of metabolic networks provides itself as a means for evaluating this huge amount of experimental data. A mathematical formulation as an optimization problem is presented, taking into account existing knowledge and experimental data as well as the probabilistic predictions of various bioinformatical methods. The reconstructed networks are optimized for having large connected components of high accuracy, hence avoiding fragmentation into small isolated subnetworks. The usefulness of this formalism is exemplified on the reconstruction of the sucrose biosynthesis pathway in Chlamydomonas reinhardtii. The problem is shown to be computationally demanding and therefore necessitates efficient approximation algorithms. The problem of minimal nutrient requirements for genome-scale metabolic networks is analyzed. Given a metabolic network and a set of target metabolites, the inverse scope problem has as it objective determining a minimal set of metabolites that have to be provided in order to produce the target metabolites. These target metabolites might stem from experimental measurements and therefore are known to be produced by the metabolic network under study, or are given as the desired end-products of a biotechological application. The inverse scope problem is shown to be computationally hard to solve. However, I assume that the complexity strongly depends on the number of directed cycles within the metabolic network. This might guide the development of efficient approximation algorithms. Assuming mass-action kinetics, chemical reaction network theory (CRNT) allows for eliciting conclusions about multistability directly from the structure of metabolic networks. Although CRNT is based on mass-action kinetics originally, it is shown how to incorporate further reaction schemes by emulating molecular enzyme mechanisms. CRNT is used to compare several models of the Calvin cycle, which differ in size and level of abstraction. Definite results are obtained for small models, but the available set of theorems and algorithms provided by CRNT can not be applied to larger models due to the computational limitations of the currently available implementations of the provided algorithms. Given the stoichiometry of a metabolic network together with steady-state fluxes and concentrations, structural kinetic modelling allows to analyze the dynamic behavior of the metabolic network, even if the explicit rate equations are not known. In particular, this sampling approach is used to study the stabilizing effects of allosteric regulation in a model of human erythrocytes. Furthermore, the reactions of that model can be ranked according to their impact on stability of the steady state. The most important reactions in that respect are identified as hexokinase, phosphofructokinase and pyruvate kinase, which are known to be highly regulated and almost irreversible. Kinetic modelling approaches using standard rate equations are compared and evaluated against reference models for erythrocytes and hepatocytes. The results from this simplified kinetic models can simulate acceptably the temporal behavior for small changes around a given steady state, but fail to capture important characteristics for larger changes. The aforementioned approach to rank reactions according to their influence on stability is used to identify a small number of key reactions. These reactions are modelled in detail, including knowledge about allosteric regulation, while all other reactions were still described by simplified reaction rates. These so-called hybrid models can capture the characteristics of the reference models significantly better than the simplified models alone. The resulting hybrid models might serve as a good starting point for kinetic modelling of genome-scale metabolic networks, as they provide reasonable results in the absence of experimental data, regarding, for instance, allosteric regulations, for a vast majority of enzymatic reactions. N2 - In dieser Arbeit werden mathematische und informatische Ansätze zur Behandlung diverser Probleme im Zusammenhang mit der Modellierung metabolischer Netzwerke vorgestellt, insbesondere unter Berücksichtigung der eingeschränkten Verfügbarkeit detaillierter Enzymkinetiken. Es wird gezeigt, dass präzise mathematische Formulierungen der Probleme notwendig sind, um erstens angemessene und, falls möglich, effiziente Algorithmen zur Lösung zu entwickeln. Und zweitens, um die Güte der so gefundenen Lösungen zu bewerten. Des weiteren werden Methoden zur Analyse dynamischer Eigenschaften metabolischer Netzwerke eingeführt, welche entweder nur auf der Struktur der Netzwerke basieren oder zusätzlich noch Informationen über stationäre Zustände mit berücksichtigen. Außerdem wird eine Strategie zur Bestimmung von Schlüsselreaktionen eines Netzwerkes vorgestellt, welche die Entwicklung kinetischer Modelle vereinfacht. Der Erfolg neuer Technologien ermöglicht eine immer billigere und schnellere Sequenzierung des Genoms. Dies wird in naher Zukunft die Analyse biologischer Netzwerke nicht nur für Spezies, sondern auch für einzelne Individuen ermöglichen. Die automatische Rekonstruktion metabolischer Netzwerke ist bestens dafür geeignet, diese großen Datenmengen auszuwerten. Eine mathematische Formulierung der Rekonstruktion als Optimierungsproblem wird vorgestellt, die sowohl bereits vorhandenes Wissen als auch theoretische Vorhersagen verschiedenster bioinformatischer Methoden berücksichtigt. Die rekonstruierten Netzwerke sind hinsichtlich möglichst großer und plausibler Zusammenhangskomponenten hin optimiert, um fragmentierte und isolierte Teilnetzwerke zu vermeiden. Als Beispiel dient die Rekonstruktion der Saccharosesynthese in Chlamydomonas reinhardtii. Es wird gezeigt, dass das Problem sehr rechenintensiv ist und somit Approximationsalgorithmen erforderlich macht. Das 'inverse scope' Problem hat als Optimierungsziel, für ein gegebenes metabolisches Netzwerk die minimale Menge notwendiger Metabolite zu bestimmen, um eine ebenfalls gegebene Menge von gewünschten Zielmetaboliten zu produzieren. Diese Zielmetabolite können entweder durch experimentellen Messungen festgelegt werden, oder sie sind die gewünschten Endprodukte einer biotechnologischen Anwendung. Es wird gezeigt, dass das 'inverse scope' Problem rechenintensiv ist. Allerdings wird angenommen, dass die Berechnungskomplexität stark von der Anzahl gerichteter Zyklen innerhalb des metabolischen Netzwerkes abhängt. Dies könnte die Entwicklung effizienter Approximationsalgorithmen ermöglichen. Unter der Annahme von Massenwirkungskinetiken erlaubt es die 'chemical reaction network theory' (CRNT), anhand der Struktur metabolischer Netzwerke Rückschlüsse auf Multistabilität zu ziehen. Auch weitere Kinetiken können durch Modellierung von Enzymmechanismen mit berücksichtigt werden. CRNT wird zum Vergleich von mehreren Modellen des Calvinzyklus, welche sich in Größe und Abstraktionsniveau unterscheiden, verwendet. Obwohl für kleinere Modelle Ergebnisse erzielt werden, erlauben es die verfügbaren Theoreme und Algorithmen der CRNT nicht, Aussagen für größere Modelle zu machen, da die gegenwärtigen Implementierungen der Algorithmen an ihre Berechnungsgrenzen stoßen. Sind sowohl die Stoichiometrie eines metabolischen Netzwerkes, als auch die Metabolitkonzentrationen und Flüsse im stationären Zustand bekannt, so kann 'structural kinetic modelling' angewandt werden, um das dynamische Verhalten des Netzwerkes zu analysieren, selbst wenn die expliziten Ratengleichung unbekannt sind. Dieser Ansatz wird verwendet, um den stabilisierenden Einfluss allosterischer Regulation in menschlichen Erythrozyten zu untersuchen. Des weiteren werden die Reaktionen anhand ihrer Bedeutung hinsichtlich Stabilität im stationären Zustand angeordnet. Die wichtigsten Reaktionen bezüglich dieser Ordnung sind Hexokinase, Phosphofructokinase und Pyruvatkinase, welche bekanntermaßen stark reguliert und irreversibel sind. Kinetische Modelle, die auf generischen Ratengleichung beruhen, werden mit detaillierten Referenzmodellen für Erythrozyten und Hepatozyten verglichen. Die generischen Modelle simulieren das Verhalten nur in der Nähe eines gegebenen stationären Zustandes recht gut. Der zuvor erwähnte Ansatz, wichtige Reaktionen bezüglich Stabilität zu identifizieren, wird zur Bestimmung von Schlüsselreaktionen genutzt. Diese Schlüsselreaktionen werden im Detail modelliert, während für alle anderen Reaktionen weiterhin generische Ratengleichung verwendet werden. Die so entstandenen Hybridmodelle können das Verhalten des Referenzmodells signifikant besser beschreiben. Die Hybridmodelle können als Ausgangspunkt zur Erstellung genomweiter kinetischer Modelle dienen. KW - metabolische Netzwerke KW - Modellierung KW - Struktur KW - Dynamik KW - Bioinformatik KW - metabolic networks KW - modelling KW - structure KW - dynamics KW - bioinformatics Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-32397 ER - TY - THES A1 - Basler, Georg T1 - Mass-balanced randomization : a significance measure for metabolic networks T1 - Massebalancierte Randomisierung : ein Maß für Signifikanz in metabolischen Netzwerken N2 - Complex networks have been successfully employed to represent different levels of biological systems, ranging from gene regulation to protein-protein interactions and metabolism. Network-based research has mainly focused on identifying unifying structural properties, including small average path length, large clustering coefficient, heavy-tail degree distribution, and hierarchical organization, viewed as requirements for efficient and robust system architectures. Existing studies estimate the significance of network properties using a generic randomization scheme - a Markov-chain switching algorithm - which generates unrealistic reactions in metabolic networks, as it does not account for the physical principles underlying metabolism. Therefore, it is unclear whether the properties identified with this generic approach are related to the functions of metabolic networks. Within this doctoral thesis, I have developed an algorithm for mass-balanced randomization of metabolic networks, which runs in polynomial time and samples networks almost uniformly at random. The properties of biological systems result from two fundamental origins: ubiquitous physical principles and a complex history of evolutionary pressure. The latter determines the cellular functions and abilities required for an organism’s survival. Consequently, the functionally important properties of biological systems result from evolutionary pressure. By employing randomization under physical constraints, the salient structural properties, i.e., the smallworld property, degree distributions, and biosynthetic capabilities of six metabolic networks from all kingdoms of life are shown to be independent of physical constraints, and thus likely to be related to evolution and functional organization of metabolism. This stands in stark contrast to the results obtained from the commonly applied switching algorithm. In addition, a novel network property is devised to quantify the importance of reactions by simulating the impact of their knockout. The relevance of the identified reactions is verified by the findings of existing experimental studies demonstrating the severity of the respective knockouts. The results suggest that the novel property may be used to determine the reactions important for viability of organisms. Next, the algorithm is employed to analyze the dependence between mass balance and thermodynamic properties of Escherichia coli metabolism. The thermodynamic landscape in the vicinity of the metabolic network reveals two regimes of randomized networks: those with thermodynamically favorable reactions, similar to the original network, and those with less favorable reactions. The results suggest that there is an intrinsic dependency between thermodynamic favorability and evolutionary optimization. The method is further extended to optimizing metabolic pathways by introducing novel chemically feasibly reactions. The results suggest that, in three organisms of biotechnological importance, introduction of the identified reactions may allow for optimizing their growth. The approach is general and allows identifying chemical reactions which modulate the performance with respect to any given objective function, such as the production of valuable compounds or the targeted suppression of pathway activity. These theoretical developments can find applications in metabolic engineering or disease treatment. The developed randomization method proposes a novel approach to measuring the significance of biological network properties, and establishes a connection between large-scale approaches and biological function. The results may provide important insights into the functional principles of metabolic networks, and open up new possibilities for their engineering. N2 - In der Systembiologie und Bioinformatik wurden in den letzten Jahren immer komplexere Netzwerke zur Beschreibung verschiedener biologischer Prozesse, wie Genregulation, Protein-Interaktionen und Stoffwechsel (Metabolismus) rekonstruiert. Ein Hauptziel der Forschung besteht darin, die strukturellen Eigenschaften von Netzwerken für Vorhersagen über deren Funktion nutzbar zu machen, also eine Verbindung zwischen Netzwerkeigenschaften und Funktion herzustellen. Die netzwerkbasierte Forschung zielte bisher vor allem darauf ab, gemeinsame Eigenschaften von Netzwerken unterschiedlichen Ursprungs zu entdecken. Dazu zählen die durchschnittliche Länge von Verbindungen im Netzwerk, die Häufigkeit redundanter Verbindungen, oder die hierarchische Organisation der Netzwerke, welche als Voraussetzungen für effiziente Kommunikationswege und Robustheit angesehen werden. Dabei muss zunächst bestimmt werden, welche Eigenschaften für die Funktion eines Netzwerks von besonderer Bedeutung (Signifikanz) sind. Die bisherigen Studien verwenden dafür eine Methode zur Erzeugung von Zufallsnetzwerken, welche bei der Anwendung auf Stoffwechselnetzwerke unrealistische chemische Reaktionen erzeugt, da sie physikalische Prinzipien missachtet. Es ist daher fraglich, ob die Eigenschaften von Stoffwechselnetzwerken, welche mit dieser generischen Methode identifiziert werden, von Bedeutung für dessen biologische Funktion sind, und somit für aussagekräftige Vorhersagen in der Biologie verwendet werden können. In meiner Dissertation habe ich eine Methode zur Erzeugung von Zufallsnetzwerken entwickelt, welche physikalische Grundprinzipien berücksichtigt, und somit eine realistische Bewertung der Signifikanz von Netzwerkeigenschaften ermöglicht. Die Ergebnisse zeigen anhand der Stoffwechselnetzwerke von sechs Organismen, dass viele der meistuntersuchten Netzwerkeigenschaften, wie das Kleine-Welt-Phänomen und die Vorhersage der Biosynthese von Stoffwechselprodukten, von herausragender Bedeutung für deren biologische Funktion sind, und somit für Vorhersagen und Modellierung verwendet werden können. Die Methode ermöglicht die Identifikation von chemischen Reaktionen, welche wahrscheinlich von lebenswichtiger Bedeutung für den Organismus sind. Weiterhin erlaubt die Methode die Vorhersage von bisher unbekannten, aber physikalisch möglichen Reaktionen, welche spezifische Zellfunktionen, wie erhöhtes Wachstum in Mikroorganismen, ermöglichen könnten. Die Methode bietet einen neuartigen Ansatz zur Bestimmung der funktional relevanten Eigenschaften biologischer Netzwerke, und eröffnet neue Möglichkeiten für deren Manipulation. KW - Bioinformatik KW - Metabolische Netzwerke KW - Signifikanz KW - Randomisierung KW - Nullmodell KW - computational biology KW - metabolic networks KW - significance KW - randomization KW - null model Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-62037 ER -