TY - JOUR A1 - Melchert, Christian A1 - Behl, Marc A1 - Nöchel, Ulrich A1 - Lendlein, Andreas T1 - Influence of Comesogens on the Thermal and Actuation Properties of 2-tert-Butyl-1,4-bis[4-(4-pentenyloxy)benzoyl]hydroquinone Based Nematic Main-Chain Liquid Crystalline Elastomers JF - Macromolecular materials and engineering N2 - Although the shape-changing capabilities of LCEs hold great potential for applications ranging from micropumps to artificial muscles, customization of the LCE functionality to the applications' requirements is still a challenge. It is studied whether the orientation of NMC-LCPs and NMC-LCEs based on 2-tert-butyl-1,4-bis[4-(4-pentenyloxy)benzoyl]hydroquinone can be enhanced by copolymerization with 2-methyl-1,4-bis[4-(4-pentenyloxy)benzoyl]hydroquinone or 2,6-bis[4-(4-pentenyl-oxy)-benzoyl]anthracene. An increasing content of the comonomers stabilizes the nematic phase, which enables a tailoring of T-NI for the NMC-LCP between 45 and 68 degrees C, while for the NMC-LCE T-NI ranges between 69 and 76 degrees C. In addition, NMC-LCE show an increased actuation performance. KW - elastomers KW - liquid-crystalline polymers KW - polysiloxanes KW - stimuli-sensitive polymers KW - thermal properties Y1 - 2012 U6 - https://doi.org/10.1002/mame.201200238 SN - 1438-7492 VL - 297 IS - 12 SP - 1203 EP - 1212 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Mazurek, P. A1 - Yu, L. A1 - Gerhard, Reimund A1 - Wirges, Werner A1 - Skov, A. L. T1 - Glycerol as high-permittivity liquid filler in dielectric silicone elastomers JF - Journal of applied polymer science N2 - A recently reported novel class of elastomers was tested with respect to its dielectric properties. The new elastomer material is based on a commercially available poly(dimethylsiloxane) composition, which has been modified by embedding glycerol droplets into its matrix. The approach has two major advantages that make the material useful in a dielectric actuator. First, the glycerol droplets efficiently enhance the dielectric constant, which can reach astonishingly high values in the composite. Second, the liquid filler also acts as a softener that effectively decreases the elastic modulus of the composite. In combination with very low cost and easy preparation, the two property enhancements lead to an extremely attractive dielectric elastomer material. Experimental permittivity data are compared to various theoretical models that predict relative permittivity changes as a function of filler loading, and the applicability of the models is discussed. (c) 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 44153. KW - crosslinking KW - dielectric properties KW - elastomers KW - sensors and actuators Y1 - 2016 U6 - https://doi.org/10.1002/app.44153 SN - 0021-8995 SN - 1097-4628 VL - 133 PB - Wiley-Blackwell CY - Hoboken ER -